Mississippi College- and Career-Readiness Standards for Science Correlation to *PhD Science*™ | Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level. | | |--|--| | Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level. | | | Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level. | | | Red indicates that <i>PhD Science</i> does not cover the standard. | | | | | Key: Module (M), Lesson (L) ### PhD Science Level 3 The Grade 3 Mississippi College- and Career-Readiness Standards are almost entirely covered by the Level 3 *PhD Science* curriculum but some out of grade level. Also, Standards L.3.2, L.3.4, P.3.5, E.3.7A, E.3.7B, and E.3.10 are partially covered but not in the detail specified. A detailed analysis of alignment appears in the table below. | Grade 3 Dis | sciplinary Core Ideas, Standards, and Performance Objectives | | Aligned PhD | | |---------------|--|------|--------------------|--| | | | | Science Lessons | | | Life Science | 2 | | | | | Disciplinary | Core Idea: L.3.1 Hierarchical Organization | | | | | | Plants and animals have physical characteristics and features that | | Level 3 M2 L16–L28 | | | | allow them to receive information from the environment. Structural | | | | | | adaptations within groups of plants and animals allow them to better | | | | | | survive and reproduce in an environment. | | | | | Standard L.3 | 3.1 Students will demonstrate an understanding of internal and external str | uct | ures in plants and | | | animals and | how they relate to their growth, survival, behavior, and reproduction with | n a | n environment. | | | L.3.1.1 | Examine evidence to communicate information that the internal and | | Level 4 M3 L1-L6 | | | | external structures of animals function to support survival, growth, | | Level 4 M3 L12-L28 | | | | and behavior. | | | | | L.3.1.2 | Examine evidence to communicate information that the internal and | | Level 4 M3 L26-L28 | | | | external structures of plant function to support survival, growth, | | | | | | behavior, and reproduction. | | | | | L.3.1.3 | Obtain and communicate examples of physical features or behaviors | | Level 3 M2 L1–L2 | | | | of vertebrates and invertebrates and how these characteristics help | | Level 3 M2 L9–L19 | | | | them survive in particular environments. | | Level 3 M2 L22–L28 | | | Disciplinary | Core Idea: L.3.2 Reproduction and Heredity | | | | | | Scientists have identified and classified many types of plants and | | Level 3 M3 L1-L18 | | | | animals. Some characteristics and traits that organisms have are | | Level 3 M3 L26-L28 | | | | inherited, and some result from interactions with the environment. | | | | | Standard L.3 | Standard L.3.2 Students will demonstrate an understanding that through reproduction, the survival and physical | | | | | features of p | plants and animals are inherited traits from parent organisms but can also b | e ir | nfluenced by the | | | environmen | t | | | | | L.3.2.1 | Identify traits and describe how traits are passed from parent | | Level 3 M3 L14-L18 | | | İ | organism(s) to offspring in plants and animals. | | Level 3 M3 L26-L28 | | | L.3.2.2 | Describe and provide examples of plant and animal offspring from a | | | |---------------|--|--------|-----------------------| | | single parent organism as being an exact replica with identical traits | | | | | as the parent organism. | | | | L.3.2.3 | Describe and provide examples of offspring from two parent | | Level 3 M3 L14–L18 | | | organisms as containing a combination of inherited traits from both | | Level 3 M3 L26–L28 | | | parent organisms. | | | | L.3.2.4 | Obtain and communicate data to provide evidence that plants and | | Level 3 M3 L1–L6 | | | animals have traits inherited from both parent organisms and that | | Level 3 M3 L16–L18 | | | variations of these traits exist in groups of similar organisms. | | Level 3 M3 L26–L28 | | L.3.2.5 | Research to justify the concept that traits can be influenced by the | | Level 3 M3 L9–L13 | | | environment. | | Level 3 M3 L19–L20 | | | | | Level 3 M3 L26–L28 | | Disciplinary | Core Idea: L.3.4 Adaptations and Diversity | | 2000131013223 223 | | Discipilitary | When the environment or habitat changes, some plants and animals | | Level 3 M2 L16–L28 | | | survive and reproduce, some move to new locations, and some die. | | LEVELS WIZ ETO EZO | | | Scientists can obtain historical information from fossils to provide | | | | | evidence of both the organism and environments in which they lived. | | | | Standard I | 3.4 Students will demonstrate an understanding of how adaptations allow a | nin | nals to satisfy life | | | espond both physically and behaviorally to their environment. | 111111 | iiais to satisfy life | | L.3.4.1 | Obtain data from informational text to explain how changes in | | Level 3 M2 L16–L21 | | L.3.4.1 | habitats can be beneficial or harmful to the organisms that live there. | | Level 3 IVIZ L10-LZ1 | | L.3.4.2 | | | Level 3 M2 L16–L21 | | L.3.4.2 | Ask questions to predict how natural or man-made changes in a | | Level 3 IVIZ L16-LZ1 | | | habitat cause plants and animals to respond in different ways, | | | | | including hibernating, migrating, responding to light, death, or | | | | | extinction. | | | | L.3.4.3 | Analyze and interpret data to explain how variations in characteristics | | Level 3 M3 L21–L28 | | | among organisms of the same species may provide advantages in | | | | | surviving, finding mates, and reproducing. | | | | L.3.4.4 | Define and improve a solution to a problem created by environmental | | Level 3 M2 L16–L28 | | | changes and any resulting impacts on the types of density and | | | | | distribution of plant and animal populations living in the | | | | | environment. Use an engineering design process to define the | | | | | problem, design, construct, evaluate, and improve the environment. | | | | L.3.4.5 | Construct scientific argument using evidence from fossils of plants | | Level 3 M2 L1–L8 | | | and animals that lived long ago to infer the characteristics of early | | Level 3 M2 L26–L28 | | | environments. | | | | Physical Sci | | | | | Disciplinary | Core Idea: P.3.5 Organization of Matter and Chemical Interactions | | | | | Matter is made up of particles that are too small to be seen. Even | | Level 5 M1 L1–L17 | | | though the particles are very small, the movement and spacing of | | Level 5 M1 L23–L26 | | | these particles determine the basic properties of matter. Matter | | | | | exists in several different states and is classified based on observable | | | | | and measurable properties. Matter can be changed from one state to | | | | | another when heat (i.e., thermal energy) is added or removed. | | | | Standard P. | 3.5 Students will demonstrate an understanding of the physical properties | of n | natter to explain why | | | change states between a solid, liquid, or gas dependent upon the addition of | | | | P.3.5.1 | Plan and conduct scientific investigations to determine how changes | | Level 5 M1 L9–L12 | | | in heat change matter from one state to another. | | | | | | | | | P.3.5.2 | Develop and use models to communicate the concept that matter is | | Level 5 M1 L5-L10 | |-----------------|--|------|---| | | made of particles too small to be seen that move freely around in | | Level 5 M1 L23-L26 | | | space. | | | | P.3.5.3 | Plan and conduct investigations that particles speed up or slow down | | | | | with addition or removal of heat. | | | | Disciplinary C | ore Idea: P.3.6 Motions, Forces, and Energy | | | | | Magnets are a specific type of solid that can attract and repel certain | | Level 3 M4 L19-L30 | | | other kinds of materials, including other magnets. There are some | | | | | materials that are neither attracted to nor repelled by magnets. | | | | | Because of their special properties, magnets are used in various ways. | | | | | Magnets can exert forces—a push or a pull—on other magnets or | | | | | magnetic materials, causing energy transfer between them, even | | | | | when the objects are not touching. | | | | | 6 Students will demonstrate an understanding of magnets and the effects | of | pushes, pulls, and | | friction on the | e motion of objects. | | | | P.3.6.1 | Compare and contrast the effects of different strengths and | | Level 3 M4 L1–L18 | | | directions of forces on the motion of an object. | | Level 3 M4 L28-L30 | | P.3.6.2 | Plan an experiment to investigate the relationship between a force | | Level 3 M4 L1–L18 | | | applied to an object and resulting motion of the object. | | Level 3 M4 L28-L30 | | P.3.6.3 | Research and communicate information to explain how magnets are | | Level 3 M4 L19–L21 | | | used in everyday life. | | | | P.3.6.4 | Define and solve a simple design problem by applying scientific ideas | | Level 3 M4 L22–L30 | | | about magnets. Use an engineering design process to define the | | | | | problem, design, construct, evaluate, and improve the magnet. | | | | Earth and Sp | ace Science | | | | Disciplinary C | ore Idea: E.3.7A Earth's Structure and History | | | | | Since its formation, the Earth has undergone a great deal of | | Level 5 M2 L6–L7 | | | geological change driven by its composition and systems. Scientists | | Level 5 M2 L10–L14 | | | use many methods to learn more about the history and age of Earth. | | Level 5 M2 L24–L26 | | | Earth materials include rocks, soils, water, and gases. Rock is | | Level 5 M3 L1–L13 | | | composed of different combinations of
minerals. Smaller rocks come | | Level 5 M3 L24–L27 | | | from the breakage and weathering of bedrock and larger rocks. Soil is | | | | | made partly from weathered rock, partly from plant remains, and | | | | | contains many living organisms. | | | | | 7A Students will demonstrate an understanding of the various processes | invo | lved in the rock cycle, | | | of rock layers, and fossil formation. | | | | E.3.7A.1 | Plan and conduct controlled scientific investigations to identify the | | | | | processes involved in forming the three major types of rock, and | | | | | investigate common techniques used to identify them. | | | | E.3.7A.2 | Develop and use models to demonstrate the processes involved in | | | | | the development of various rock formations, including superposition, | | | | | and how those formations can fracture and move over time. | | | | E.3.7A.3 | Ask questions to generate testable hypotheses regarding the | | Level 4 M1 L4–L5 | | | formation and location of fossil types, including their presence in | | Level 4 M1 L25–L27 | | | some sedimentary rock. | | | | Disciplinary C | ore Idea: E.3.7B Earth's Structure and History | | | | | l = | | | | | Earth has an active mantle, which interacts with the Earth's crust to | | Level 4 M1 L6–L11 | | | drive plate tectonics and form new rocks. Resulting surface features | | Level 4 M1 L6–L11
Level 4 M1 L25–L27 | | | · · | | | | | eroding rock and soil in some areas and depositing them in other | | | |----------------|--|-------|---------------------| | | areas. Scientists use many methods to learn more about the history | | | | | and age of Earth. | | | | Standard E.3 | .7B Students will demonstrate an understanding of the composition of Ear | th a | and the processes | | which change | e Earth's landforms. | | | | E.3.7B.1 | Obtain and evaluate scientific information to describe the four major | | | | | layers of Earth and the varying compositions of each layer. | | | | E.3.7B.2 | Develop and use models to describe the characteristics of Earth's | | Level 4 M1 L18-L20 | | | continental landforms and classify landforms as volcanoes, | | Level 4 M1 L25–L27 | | | mountains, valleys, canyons, planes, and islands. | | | | E.3.7B.3 | Develop and use models of weathering, erosion, and deposition | | Level 4 M1 L1–L11 | | | processes which explain the appearance of various Earth features. | | Level 4 M1 L18 | | | P | | Level 4 M1 L25–L27 | | E.3.7B.4 | Compare and contrast constructive and destructive processes of the | | 2010111112120121 | | 2.3.7 5.4 | Earth. | | | | Farth and Sr | pace Science | | | | | | | | | Disciplinary (| Core Idea: E.3.9 Earth's Systems and Cycles | | Lovel 4 M4 140 120 | | | The Earth's land can be situated above or submerged below water. | | Level 4 M1 L18–L20 | | | Water in the atmosphere changes states according to energy levels | | Level 4 M1 L25–L27 | | | driven by the sun and its interactions with various Earth components, | | Level 5 M3 L4–L5 | | | both living and non-living. The downhill movement of water as it | | Level 5 M3 L24–L27 | | | flows to the ocean shapes the appearance of the land. | | | | | 9.9 Students will demonstrate an understanding of how the Earth's systems | • | | | hydrosphere | , atmosphere, and biosphere) interact in multiple ways to affect Earth's su | rfac | e materials and | | processes. | | | | | E.3.9.1 | Develop models to communicate the characteristics of the Earth's | | Level 5 M3 L1–L3 | | | major systems, including the geosphere, hydrosphere, atmosphere, | | Level 5 M3 L6-L11 | | | and biosphere. | | | | E.3.9.2 | Construct explanations of how different landforms and surface | | Level 4 M1 L8-L11 | | | features result from the location and movement of water on Earth's | | Level 4 M1 L18 | | | surface. | | Level 4 M1 L21–L22 | | | | | Level 4 M1 L25–L27 | | E.3.9.3 | Use graphical representations to communicate the distribution of | | Level 5 M3 L4–L5 | | | freshwater and saltwater on Earth. | | Level 5 M3 L19–L26 | | Disciplinary (| Core Idea: E.3.10 Earth's Resources | | | | 2.00.p.m.a.y | Earth is made of materials that provide resources for human | | Level 4 M1 L21–L27 | | | activities, and their use affects the environment in multiple ways. | | Level 5 M3 L14–L18 | | | Some resources are renewable and others are not. | | Level 5 M3 L24–L27 | | Ctondord F 2 | 3.10 Students will demonstrate an understanding that all materials, energy | 25 | | | | | , dii | d fuels that humans | | | red from natural sources. | | 1 | | E.3.10.1 | Identify some of Earth's resources that are used in everyday life such | | Level 4 M1 L23–L24 | | | as water, wind, soil, forests, oil, natural gas, and minerals and classify | | | | | as renewable or nonrenewable. | | | | E.3.10.2 | Obtain and communicate information to exemplify how humans | | Level 5 M3 L14–L16 | | | attain, use, and protect renewable and nonrenewable Earth | | | | | resources. | | | | E.3.10.3 | Use maps and historical information to identify natural resources in | | | | | the state connecting (a) how resources are used for human needs and | | | | | (b) how the use of those resources impacts the environment. | | | | E.3.10.4 | Design a process for cleaning a polluted environment. Use an | | |----------|--|--| | 2.3.10.4 | 1 | | | | engineering design process to define the problem, design, construct, | | | | evaluate, and improve the environment. | | | Sci | Science and Engineering Practices | | Aligned PhD | |-----|--|--|--------------------| | | | | Science Lessons | | 1 | Ask Questions and Define Problems | | Level 3 M1 L1–L3 | | | Ask questions about what would happen if a variable is changed. | | Level 3 M1 L21–L26 | | | Identify scientific (testable) and non-scientific (non-testable) questions. | | Level 3 M2 L1–L2 | | | Ask questions that can be investigated and predict reasonable outcomes | | Level 3 M3 L1-L3 | | | based on patterns such as cause and effect relationships. | | Level 3 M3 L12-L13 | | | Use prior knowledge to describe problems that can be solved. | | Level 3 M4 L1-L3 | | | Define a simple design problem that can be solved through the development | | Level 3 M4 L7–L9 | | | of an object, tool, process, or system and includes several criteria for success | | Level 3 M4 L15-L16 | | | and constraints on materials, time, or cost. | | Level 3 M4 L19-L30 | | 2 | Develop and Use Models | | Level 3 M1 L1–L3 | | | Identify limitations of models. | | Level 3 M1 L19–L20 | | | Collaboratively develop and/or revise a model based on evidence that shows | | Level 3 M2 L1–L3 | | | the relationships among variables for frequent and regular occurring events. | | Level 3 M2 L6-L12 | | | Develop a model using an analogy, example, or abstract representation to | | Level 3 M2 L22–L25 | | | describe a scientific principle or design solution. | | Level 3 M3 L7-L11 | | | Develop and/or use models to describe and/or predict phenomena. | | Level 3 M3 L21–L25 | | | Develop a diagram or simple physical prototype to convey a proposed | | Level 3 M4 L1-L3 | | | object, tool, or process. | | Level 3 M4 L17-L18 | | | Use a model to test cause and effect relationships or interactions concerning | | Level 3 M4 L23-L27 | | | the functioning of a natural or designed system. | | | | 3 | Plan and Carry Out Investigations | | Level 3 M2 L4–L5 | | | Plan and conduct an investigation collaboratively to produce data to serve as | | Level 3 M3 L12–L13 | | | the basis for evidence, using fair tests in which variables are controlled and | | Level 3 M4 L7-L18 | | | the number of trials considered. | | Level 3 M4 L23-L30 | | | Evaluate appropriate methods and/or tools for collecting data. | | | | | Make observations and/or measurements to produce data to serve as the | | | | | basis for evidence for an explanation of a phenomenon or test a design | | | | | solution. | | | | | Make predictions about what would happen if a variable changes. | | | | | Test two different models of the same proposed object, tool, or process to | | | | | determine which better meets criteria for success. | | | | 4 | Analyze and Interpret Data | | Level 3 M1 L4–L15 | | | Represent data in tables and/or various graphical displays (bar graphs, | | Level 3 M1 L19–L20 | | | pictographs, and/or pie charts) to reveal patterns that indicate relationships. | | Level 3 M1 L27–L29 | | | Analyze and interpret data to make sense of phenomena, using logical | | Level 3 M2 L3-L8 | | | reasoning, mathematics, and/or computation. | | Level 3 M2 L16–L19 | | | Compare and contrast data collected by different groups in order to discuss | | Level 3 M3 L4-L8 | | | similarities and differences in their findings. | | Level 3 M3 L14–L20 | | | Analyze data to refine a problem statement or the design of a proposed | | Level 3 M4 L4-L9 | | | object, tool, or process. | | | | | Use data to evaluate and refine design solutions. | | | | 5 | Use Mathematics and Computational Thinking | | Level 3 M1 L4-L12 | | | Decide if qualitative or quantitative data are best to determine whether a proposed object or tool meets criteria for success. Organize simple data sets to reveal patterns that suggest relationships. Describe, measure, estimate, and/or graph quantities such as area, volume, | Level 3 M2 L3
Level 3 M2 L16–L19
Level 3 M3 L7–L8
Level 3 M4 L23–L27 | |---|--
---| | | weight, and time to address scientific and engineering questions and problems. | | | | Create and/or use graphs and/or charts generated from simple algorithms to
compare alternative solutions to an engineering problem. | | | 6 | Construct Explanations and Design Solutions | Level 3 M1 L13-L15 | | | • Construct an explanation of observed relationships (e.g., the distribution of | Level 3 M1 L18 | | | plants in the backyard). | Level 3 M1 L21–L29 | | | • Use evidence (e.g., measurements, observations, patterns) to construct or | Level 3 M2 L6–L8 | | | support an explanation or design a solution to a problem. | Level 3 M2 L22–L28 | | | • Identify the evidence that supports particular points in an explanation. | Level 3 M3 L9–L11 | | | Apply scientific ideas to solve design problems. | Level 3 M3 L14–L15 | | | Generate and compare multiple solutions to a problem based on how well | Level 3 M3 L21–L28 | | | they meet the criteria and constraints of the design solution. | Level 3 M4 L10–L14 | | | | Level 3 M4 L19–L21 | | | | Level 3 M4 L28–L30 | | 7 | Engage in Argument from Evidence | Level 3 M1 L21–L26 | | | Compare and refine arguments based on an evaluation of the evidence | Level 3 M2 L9–L15 | | | presented. | Level 3 M2 L20–L21 | | | Distinguish among facts, reasoned judgment based on research findings, and | Level 3 M3 L16–L20 | | | speculation in an explanation. | Level 3 M4 L10–L14 | | | Respectfully provide and receive critiques from peers about a proposed | | | | procedure, explanation, or model by citing relevant evidence and posing specific questions. | | | | Construct and/or support an argument with evidence, data, and/or a model. | | | | Use data to evaluate claims about cause and effect. | | | | Make a claim about the merit of a solution to a problem by citing relevant | | | | evidence about how it meets the criteria and constraints of the problem. | | | 8 | Obtain, Evaluate, and Communicate Information | Level 3 M1 L16–L17 | | | Read and comprehend grade-appropriate complex texts and/or other | Level 3 M2 L13-L15 | | | reliable media to summarize and obtain scientific and technical ideas and | Level 3 M2 L20-L21 | | | describe how they are supported by evidence. | Level 3 M4 L22 | | | Compare and/or combine across complex texts and/or other reliable media | | | | to support the engagement in other scientific and/or engineering practices. | | | | Combine information in written text with that contained in corresponding | | | | tables, diagrams, and/or charts to support the engagement in other scientific | | | | and/or engineering practices. | | | | Obtain and combine information from books and/or other reliable media to ovalain phanagement of solutions to a design problem. | | | | explain phenomena or solutions to a design problem. Communicate scientific and/or technical information orally and/or in written | | | | Communicate scientific and/or technical information orally and/or in written
formats, including various forms of media and may include tables, diagrams, | | | | and charts. | | | | and Charts. | | | Crosscutting Concepts | Aligned PhD | |-----------------------|-----------------| | | Science Lessons | | 1 | Patterns Similarities and differences in patterns can be used to sort classify | Level 3 M1 L11–L15 | |---|--|--| | | on married and anterended in patterns our se asea to sort, classify, | Level 3 M1 L19–L20 | | | communicate, and analyze simple rates of change for natural phenomena | Level 3 M1 L27–L29 | | | and designed products.Patterns of change can be used to make predictions. | Level 3 M2 L3–L8 | | | = ; | Level 3 M2 L13–L15 | | | Patterns can be used as evidence to support an explanation. | Level 3 M3 L1–L8 | | | | Level 3 M3 L14–L18 | | | | Level 3 M3 L26–L28 | | | | Level 3 M4 L1–L9 | | 2 | Cause and Effect | Level 3 M4 L28–L30
Level 3 M1 L1–L3 | | 2 | | | | | Cause and effect relationships are routinely identified, tested, and used to | Level 3 M1 L16–L18
Level 3 M1 L21–L29 | | | explain change. | | | | Events that occur together with regularity might or might not be a cause and ##set male in a letter with | Level 3 M2 L9–L12 | | | effect relationship. | Level 3 M2 L16–L28 | | | | Level 3 M3 L9–L13 | | | | Level 3 M3 L19–L25 | | | | Level 3 M4 L1–L3 | | _ | Cools Businessian and Occupation | Level 3 M4 L10–L30 | | 3 | Scale, Proportion, and Quantity | Level 3 M1 L4–L10 | | | Natural objects and/or observable phenomena exist from the very small to | Level 3 M2 L1–L2 | | | the immensely large or from very short to very long time periods. | Level 3 M3 L1–L3 | | | Standard units are used to measure and describe physical quantities such as
weight, time, temperature, and volume. | Level 3 M3 L14–L15 | | 4 | Systems and System Models | Level 3 M1 L1–L3 | | - | A system is a group of related parts that make up a whole and can carry out | Level 3 M1 L16–L20 | | | functions its individual parts cannot. | Level 3 M2 L6–L15 | | | A system can be described in terms of its components and their interactions. | Level 3 M2 L20–L28 | | | , , | Level 3 M3 L9-L11 | | | | Level 3 M4 L1-L30 | | 5 | Energy and Matter | Level 5 M1 L5–L8 | | | Matter is made of particles. | Level 5 M1 L13-L14 | | | Matter flows and cycles can be tracked in terms of the weight of the | Level 5 M1 L23-L26 | | | substances before and after a process occurs. The total weight of the | Level 5 M2 L6-L11 | | | substances does not change. This is what is meant by conservation of | Level 5 M2 L14-L19 | | | matter. Matter is transported into, out of, and within systems. | Level 5 M2 L24–L26 | | | Energy can be transferred in various ways and between objects. | Level 5 M3 L10-L11 | | | | Level 5 M4 L3–L4 | | 6 | Structure and Function | Level 3 M1 L21–L26 | | 1 | Different materials have different substructures, which can sometimes be | Level 3 M2 L1–L3 | | | observed. | Level 3 M2 L9–L12 | | | Substructures have shapes and parts that serve functions. | Level 3 M3 L4–L6 | | | | Level 3 M3 L21–L28 | | 7 | Stability and Change | Level 3 M1 L4–L15 | | | Change is measured in terms of differences over time and may occur at | Level 3 M1 L27–L29 | | 1 | different rates. | Level 3 M2 L16–L19 | | | Some systems appear stable, but over long periods of time will eventually | Level 3 M3 L7–L8 | | | change. | Level 3 M3 L12–L13 | | | _ | Level 3 M3 L19–L20 | | | | Level 3 M3 L26–L28 | | | | _ | # Mississippi College- and Career-Readiness Standards for Science Correlation to *PhD Science*™ | Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level. | | |--|--| | Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level. | | | Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level. | | | Red indicates that <i>PhD Science</i> does not cover the standard. | | | | | Key: Module (M), Lesson (L) ### PhD Science Level 4 The Grade 4 Mississippi College- and Career-Readiness Standards are almost entirely covered by the Level 4 *PhD Science* curriculum but some out of grade level, and Standards L.4.1, P.4.6A, and P.4.6B are partially covered but not in the detail specified. Standard P.4.6C is not covered. A detailed analysis of alignment appears in the table below. | Grade 4 D | isciplinary Core Ideas, Standards, and Performance Objectives | | Aligned PhD | |--------------|---|------|----------------------| | | | | Science Lessons | | Life Science | ce | | | |
Disciplinar | ry Core Idea: L.4.1 Hierarchical Organization | | | | | All organisms need energy for growth and development. Animals | | Level 5 M2 L8–L9 | | | have specialized structures and systems for obtaining and processing | | Level 5 M2 L15–L19 | | | energy. These structures and systems cannot function properly | | Level 5 M2 L24–L26 | | | without adequate nourishment. Living organisms can be adversely | | | | | affected by environmental conditions or disease. | | | | Standard L | 4.1 Students will demonstrate an understanding of the organization, function | ons, | and interconnections | | of the major | or human body systems. | | | | L.4.1.1 | Use technology or other resources to research and discover general | | Level 4 M3 L1–L5 | | | system function (e.g., machines, water cycle) as they relate to human | | | | | organ systems and identify organs that work together to create organ | | | | | systems. | | | | L.4.1.2 | Obtain and communicate data to describe patterns that indicate the | | | | | nature of relationships between human organ systems, which | | | | | interact with one another to control digestion, respiration, | | | | | circulation, excretion, movement, coordination, and protection from | | | | | infection. | | | | L.4.1.3 | Construct models of organ systems to demonstrate both the unique | | | | | function of the system and how multiple organs and organ systems | | | | | work together to accomplish more complex functions. | | | | L.4.1.4 | Research and communicate how noninfectious diseases and | | | | | infectious diseases serve to disrupt the function of the body system. | | | | L.4.1.5 | Using informational text, investigate how scientific fields, medical | | | | | specialties, and research methods help us find new ways to maintain | | | | | a healthy body and lifestyle. | | | | Disciplinary Co | ore Idea: L.4.2 Reproduction and Heredity | | | |-----------------|--|------|-----------------------| | , | Scientists have identified and classified many types of plants and | | Level 5 M2 L8–L9 | | | animals. Each plant or animal has a unique pattern of growth and | | Level 5 M2 L15–L19 | | | development called a life cycle. All of Earth's cycles are driven by | | Level 5 M2 L24–L26 | | | energy which can be traced back to the sun. | | | | Standard L.4.2 | 2 Students will demonstrate an understanding of life cycles, including fam | ilia | r plants and animals. | | L.4.2.1 | Compare and contrast life cycles of familiar plants and animals. | | Level 3 M3 L7–L8 | | | | | Level 3 M3 L23-L28 | | L.4.2.2 | Develop and use models to explain the unique and diverse life cycles | | Level 3 M3 L7–L8 | | | of organisms other than humans including commonalities. | | Level 3 M3 L23-L28 | | Physical Scier | | | | | Disciplinary Co | ore Idea: P.4.6A Motions, Forces, and Energy | | | | - | As different forms of energy, heat and electricity can be produced in | | Level 4 M2 L1–L26 | | | different ways and are transferred and conducted from one form or | | | | | object to another. Some materials can be conductors or insulators of | | | | | heat energy. Electricity can be transferred from place to place by | | | | | electric currents to produce motion, sound, heat, or light. | | | | Standard P.4.6 | 6A Students will demonstrate an understanding of the common sources a | nd | uses of heat and | | | y and the materials used to transfer heat and electricity. | | | | P.4.6A.1 | Obtain and communicate information to compare how different | | Level 4 M2 L4–L5 | | | processes serve as sources of heat energy. | | | | P.4.6A.2 | Plan and conduct scientific investigations to classify different | | | | | materials as either an insulator or conductor of electricity. | | | | P.4.6A.3 | Develop models demonstrating how heat and electrical energy can be | | Level 4 M2 L10-L11 | | | transformed into other forms of energy. | | | | P.4.6A.4 | Develop models that demonstrate the path of an electric current in a | | | | | complete, simple circuit. | | | | P.4.6A.5 | Use informational text and technology resources to communicate | | | | | technological breakthroughs made by historical figures in electricity. | | | | P.4.6A.6 | Design a device that converts any form of energy from one form to | | Level 4 M2 L12–L23 | | | another. Use an engineering design process to define the problem, | | | | | design, construct, evaluate, and improve the device. | | | | Disciplinary Co | pre Idea: P.4.6B Motions, Forces, and Energy | | | | | Light, as a form of energy, has specific properties, including | | Level 4 M4 L1-L13 | | | brightness. Light travels in a straight line until it strikes an object. The | | Level 4 M4 L20-L26 | | | way light behaves when it strikes an object depends on the object's | | | | | properties. | | | | | 6B Students will demonstrate an understanding of the properties of light | as f | orms of energy. | | P.4.6B.1 | Construct scientific evidence to support the claim that white light is | | | | | made up of different colors. Include the work of Sir Isaac Newton to | | | | | communicate results. | | | | P.4.6B.2 | Obtain and communicate information to explain how the visibility of | | Level 4 M4 L1–L17 | | | an object is related to light. | | Level 4 M4 L25–L27 | | P.4.6B.3 | Develop and use models to communicate how light travels and | | Level 4 M4 L7–L17 | | | behaves when it strikes an object, including reflection, refraction, and | | Level 4 M4 L25–L27 | | | absorption. | | | | P.4.6B.4 | Plan and conduct scientific investigations to explain how light | | Level 4 M4 L7–L17 | | | behaves when it strikes transparent, translucent, and opaque | | Level 4 M4 L25–L27 | | | materials. | | | | Disciplinary Co | ore Idea: P.4.6C Motions, Forces, and Energy | | | | | Sound, as a form of energy, is produced by vibrating objects (matter) | | Level 4 M2 L10 | |---------------|--|------|---------------------| | | and has specific properties, including pitch and volume. Sound travels | | Level 4 M4 L3–L8 | | | through air and other materials and is used to communicate | | Level 4 M4 L26 | | | information in various forms of technology. | | | | Standard P.4 | 4.6C Students will demonstrate an understanding of the properties of soun | d as | a form of energy. | | P.4.6C.1 | Plan and conduct scientific investigations to test how different | | | | | variables affect the properties of sound. | | | | P.4.6C.2 | In relation to how sound is perceived by humans, analyze and | | | | | interpret data from observations and measurements to report how | | | | | changes in vibration affect the pitch and volume of sound. | | | | P.4.6C.3 | Obtain and communicate information about scientists who pioneered | | | | | in the science of sound. | | | | Earth and S | pace Science | | | | Disciplinary | Core Idea: E.4.9A Earth's Systems and Cycles | | | | | Earth's atmosphere is a mixture of gases, including water vapor and | | Level 5 M3 L4-L5 | | | oxygen. Water, which is found almost everywhere on Earth, including | | Level 5 M3 L8 | | | the atmosphere, changes form and cycles between Earth's surface to | | Level 5 M3 L24–L27 | | | the air and back again. This cycling of water is driven by energy from | | | | | the sun. The movement of water in the water cycle is a major process | | | | | that influences weather conditions. Clouds form during this cycle and | | | | | various types of precipitation result. | | | | Standard E.4 | 4.9A Students will demonstrate an understanding of how the water cycle is | pro | pelled by the sun's | | energy. | | | | | E.4.9A.1 | Develop and use models to explain how the sun's energy drives the | | Level 5 M3 L6–L8 | | | water cycle. | | | | Disciplinary | Core Idea: E.4.9B Earth's Systems and Cycles | | | | | Scientists record patterns in weather conditions over time and across | | Level 3 M1 L1–L15 | | | the globe to make predictions about what kind of weather might | | Level 3 M1 L19–L20 | | | occur next. Climate describes the range of an area's typical weather | | Level 3 M1 L27–L29 | | | conditions and the extent to which those conditions vary over long | | | | | periods of time. | | | | | 1.9B Students will demonstrate an understanding of weather and climate p | atte | | | E.4.9B.1 | Analyze and interpret data to predict changes in weather over time. | | Level 3 M1 L1–L15 | | | | | Level 3 M1 L19–L20 | | | | | Level 3 M1 L27–L29 | | E.4.9B.2 | Construct explanations about regional climate differences using maps | | Level 3 M1 L11–L15 | | | and long-term data from various regions. | | Level 3 M1 L27–L29 | | E.4.9B.3 | Design weather instruments utilized to measure weather conditions. | | Level 3 M1 L4–L7 | | | Use an engineering design process to define the problem, design, | | | | | construct, evaluate, and improve the weather instrument. | | | | Disciplinary | Core Idea: E.4.9C Earth's Systems and Cycles | | Г | | | Earth's oceans and landforms can be affected in various ways by | | Level 3 M1 L1–L3 | | | natural processes in one or more of Earth's spheres (i.e., atmosphere, | | Level 3 M1 L16–L29 | | | biosphere, geosphere, and hydrosphere). Humans cannot eliminate | | Level 5 M3 L1–L13 | | | natural hazards caused by these processes but can take steps to | | Level 5 M3 L24–L27 | | | reduce their impacts. Human activities can affect the land and oceans | | | | 6 | in positive and negative ways. | | | | | 4.9C Students will demonstrate an understanding of how natural processes | and | numan activities | | affect the fe | atures of Earth's landforms and oceans. | | | | E.4.9C.1 | Analyze and interpret data to describe and predict how natural | | Level 4 M1 L6-L11 | |-----------------|---|-----|--------------------| | | processes affect Earth's surface. | | Level 4 M1
L18 | | E.4.9C.2 | Develop and use models of natural processes to explain the effect of | | Level 5 M3 L12-L13 | | | the movement of water on the ocean shore zone, including beaches, | | | | | barrier islands, estuaries, and inlets. | | | | E.4.9C.3 | Construct scientific arguments from evidence to support claims that | | Level 4 M1 L21–L24 | | | human activities, such as conservation efforts or pollution, affect the | | | | | land, oceans, and atmosphere of Earth. | | | | E.4.9C.4 | Research and explain how systems interact and support life in the | | Level 5 M3 L1–L3 | | | biosphere. | | Level 5 M3 L6-13 | | | | | Level 5 M3 L19–L26 | | E.4.9C.5 | Obtain and communicate information about severe weather | | Level 3 M1 L1–L3 | | | phenomena to explain steps humans can take to reduce the impact of | | Level 3 M1 L16–L29 | | | severe weather events. | | | | Disciplinary Co | pre Idea: E.4.10 Earth's Resources | | | | | Energy and fuels are derived from natural sources and human use of | | Level 4 M1 L21–L27 | | | these materials affects the environment in multiple ways. Due to | | | | | limited natural resources, humans are exploring the use of abundant | | | | | solar, water, wind, and geothermal energy resources to develop | | | | | innovative, high-tech renewable energy systems. | | | | Standard E.4.1 | .0 Students will demonstrate an understanding of the various sources of | ene | rgy used for human | | needs along w | ith their effectiveness and possible impacts. | | | | E.4.10.1 | Organize simple data sets to compare energy and pollution output of | | Level 4 M1 L23–L24 | | | various traditional, nonrenewable resources. | | | | E.4.10.2 | Use technology or informational text to investigate, evaluate, and | | Level 4 M2 L1–L3 | | | communicate various forms of clean energy generation. | | | | Sci | ence and Engineering Practices | Aligned PhD | |-----|---|--------------------| | | | Science Lessons | | 1 | Ask Questions and Define Problems | Level 4 M1 L1–L2 | | | Ask questions about what would happen if a variable is changed. | Level 4 M2 L1-L3 | | | Identify scientific (testable) and non-scientific (non-testable) questions. | Level 4 M2 L8-L9 | | | Ask questions that can be investigated and predict reasonable outcomes | Level 4 M3 L1-L3 | | | based on patterns such as cause and effect relationships. | Level 4 M3 L15-L19 | | | Use prior knowledge to describe problems that can be solved. | Level 4 M4 L1-L2 | | | Define a simple design problem that can be solved through the development | | | | of an object, tool, process, or system and includes several criteria for success | | | | and constraints on materials, time, or cost. | | | 2 | Develop and Use Models | Level 4 M1 L1-L2 | | | Identify limitations of models. | Level 4 M2 L1-L3 | | | Collaboratively develop and/or revise a model based on evidence that shows | Level 4 M2 L8-L11 | | | the relationships among variables for frequent and regular occurring events. | Level 4 M2 L15-L16 | | | Develop a model using an analogy, example, or abstract representation to | Level 4 M3 L1-L3 | | | describe a scientific principle or design solution. | Level 4 M3 L7-L11 | | | Develop and/or use models to describe and/or predict phenomena. | Level 4 M4 L1-L8 | | | Develop a diagram or simple physical prototype to convey a proposed object, tool, or process. | Level 4 M4 L10–L23 | | | Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system. | | |---|--|---------------------| | _ | the functioning of a natural or designed system. | Lovel 4 N41 LC 144 | | 3 | Plan and Carry Out Investigations | Level 4 M1 L6–L11 | | | Plan and conduct an investigation collaboratively to produce data to serve as the basis for suideness using fair texts in which we riskless are controlled and | Level 4 M1 L21–L22 | | | the basis for evidence, using fair tests in which variables are controlled and | Level 4 M2 L6–L7 | | | the number of trials considered. | Level 4 M2 L10–L14 | | | Evaluate appropriate methods and/or tools for collecting data. | Level 4 M3 L15–L19 | | | Make observations and/or measurements to produce data to serve as the leads for a video of formation of a phase area and a decision. | Level 4 M4 L7–L9 | | | basis for evidence for an explanation of a phenomenon or test a design | Level 4 M4 L14–L16 | | | solution. | Level 4 M4 L20–L23 | | | Make predictions about what would happen if a variable changes. That the different models of the company and a binet tool and a second a binet tool. | | | | Test two different models of the same proposed object, tool, or process to
determine which better meets criteria for success. | | | 4 | Analyze and Interpret Data | Level 4 M1 L12–L20 | | | Represent data in tables and/or various graphical displays (bar graphs, | Level 4 M1 L23–L24 | | | pictographs, and/or pie charts) to reveal patterns that indicate relationships. | Level 4 M4 L10–L13 | | | Analyze and interpret data to make sense of phenomena, using logical | 20001 11111 220 220 | | | reasoning, mathematics, and/or computation. | | | | Compare and contrast data collected by different groups in order to discuss | | | | similarities and differences in their findings | | | | Analyze data to refine a problem statement or the design of a proposed | | | | object, tool, or process. | | | | Use data to evaluate and refine design solutions. | | | 5 | Use Mathematics and Computational Thinking | Level 4 M2 L8–L9 | | | Decide if qualitative or quantitative data are best to determine whether a | | | | proposed object or tool meets criteria for success. | | | | Organize simple data sets to reveal patterns that suggest relationships. | | | | Describe, measure, estimate, and/or graph quantities such as area, volume, | | | | weight, and time to address scientific and engineering questions and | | | | problems. | | | | Create and/or use graphs and/or charts generated from simple algorithms to | | | | compare alternative solutions to an engineering problem. | | | 6 | Construct Explanations and Design Solutions | Level 4 M1 L3-L7 | | | Construct an explanation of observed relationships (e.g., the distribution of | Level 4 M1 L12–L18 | | | plants in the backyard). | Level 4 M1 L21–L22 | | | Use evidence (e.g., measurements, observations, patterns) to construct or | Level 4 M1 L25–L27 | | | support an explanation or design a solution to a problem. | Level 4 M2 L4–L5 | | | Identify the evidence that supports particular points in an explanation. | Level 4 M2 L15–L26 | | | Apply scientific ideas to solve design problems. | Level 4 M3 L24–L25 | | | Generate and compare multiple solutions to a problem based on how well | Level 4 M3 L29-L31 | | | they meet the criteria and constraints of the design solution. | Level 4 M4 L14-L26 | | 7 | Engage in Argument from Evidence | Level 4 M3 L4–L5 | | | Compare and refine arguments based on an evaluation of the evidence | Level 4 M3 L21–L23 | | | presented. | Level 4 M3 L26-L28 | | | • Distinguish among facts, reasoned judgment based on research findings, and | Level 4 M4 L7–L8 | | | speculation in an explanation. | | | | Respectfully provide and receive critiques from peers about a proposed | | | | procedure, explanation, or model by citing relevant evidence and posing | | | | specific questions. | | | | • Construct and/or support an argument with evidence, data, and/or a model. | | | | Use data to evaluate claims about cause and effect. Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. | | |---|--|--| | 8 | Obtain, Evaluate, and Communicate Information Read and comprehend grade-appropriate complex texts and/or other reliable media to summarize and obtain scientific and technical ideas and describe how they are supported by evidence. Compare and/or combine across complex texts and/or other reliable media to support the engagement in other scientific and/or engineering practices. Combine information in written text with that contained in corresponding tables, diagrams, and/or charts to support the engagement in other scientific and/or engineering practices. Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. Communicate scientific and/or technical information orally and/or in written formats,
including various forms of media as well as tables, diagrams, and charts. | Level 4 M1 L3–L5
Level 4 M1 L23–L24
Level 4 M3 L4–L6
Level 4 M3 L10–L11
Level 4 M3 L20–L23
Level 4 M3 L26–L28
Level 4 M4 L17–L19 | | Cro | osscutting Concepts | Aligned PhD | |-----|---|--------------------| | | | Science Lessons | | 1 | Patterns | Level 4 M1 L1-L5 | | | Similarities and differences in patterns can be used to sort, classify, | Level 4 M1 L18-L22 | | | communicate, and analyze simple rates of change for natural phenomena | Level 4 M2 L4-L5 | | | and designed products. | Level 4 M2 L8-L11 | | | Patterns of change can be used to make predictions. | Level 4 M2 L24-L26 | | | Patterns can be used as evidence to support an explanation. | Level 4 M3 L1-L3 | | | | Level 4 M3 L7-L11 | | | | Level 4 M3 L20 | | | | Level 4 M3 L24-L28 | | | | Level 4 M4 L1-L4 | | | | Level 4 M4 L7-L8 | | | | Level 4 M4 L17-L23 | | 2 | Cause and Effect | Level 4 M1 L6-L17 | | | Cause and effect relationships are routinely identified, tested, and used to | Level 4 M1 L19-L20 | | | explain change. | Level 4 M1 L23–L27 | | | • Events that occur together with regularity might or might not be a cause and | Level 4 M2 L1–L7 | | | effect relationship. | Level 4 M2 L10–L14 | | | | Level 4 M2 L24-L26 | | | | Level 4 M3 L6-L11 | | | | Level 4 M3 L15-L23 | | | | Level 4 M4 L3-L16 | | | | Level 4 M4 L24–L26 | | 3 | Scale, Proportion, and Quantity | Level 4 M1 L3–L5 | | | Natural objects and/or observable phenomena exist from the very small to | | | | the immensely large or from very short to very long time periods. | | | | • Standard units are used to measure and describe physical quantities such as | | | | weight, time, temperature, and volume. | | | 4 | Systems and System Models | Level 4 M1 L1–L2 | | | A system is a group of related parts that make up a whole and can carry out functions its individual parts cannot. A system can be described in terms of its components and their interactions. | Level 4 M1 L12–L17
Level 4 M1 L21–L24
Level 4 M2 L1–L11
Level 4 M2 L15–L26
Level 4 M3 L4–L5
Level 4 M3 L7–L9
Level 4 M3 L15–L19
Level 4 M3 L21–L23
Level 4 M3 L26–L31 | |---|--|---| | | | Level 4 M4 L1–L8
Level 4 M4 L10–L23 | | 5 | Energy and Matter Matter is made of particles. Matter flows and cycles can be tracked in terms of the weight of the substances before and after a process occurs. The total weight of the substances does not change. This is what is meant by conservation of matter. Matter is transported into, out of, and within systems. Energy can be transferred in various ways and between objects. | Level 4 M2 L1–L3
Level 4 M2 L8–L26
Level 4 M3 L1–L3
Level 4 M3 L10–L19 | | 6 | Structure and Function Different materials have different substructures, which can sometimes be observed. Substructures have shapes and parts that serve functions. | Level 4 M3 L4–L6
Level 4 M3 L20
Level 4 M3 L24–L25
Level 4 M3 L29–L31
Level 4 M4 L9
Level 4 M4 L24–L26 | | 7 | Stability and Change Change is measured in terms of differences over time and may occur at different rates. Some systems appear stable, but over long periods of time will eventually change. | Level 4 M1 L3–L11
Level 4 M1 L18–L20
Level 4 M1 L25–L27 | # Mississippi College- and Career-Readiness Standards for Science Correlation to *PhD Science*™ | Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level. | | |--|--| | Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level. | | | Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level. | | | Red indicates that <i>PhD Science</i> does not cover the standard. | | | | | Key: Module (M), Lesson (L) ### PhD Science Level 5 The Grade 5 Mississippi College- and Career-Readiness Standards are almost entirely covered by the Level 3 *PhD Science* curriculum but some out of grade level. Also, Standards L.5.3A, L.5.3B, P.5.5A, P.5.5B, P.5.6, E.5.8A, and E.5.8B are partially covered but not in the detail specified. A detailed analysis of alignment appears in the table below. | Grade 5 Dis | ciplinary Core Ideas, Standards, and Performance Objectives | | Aligned PhD | | | |--------------|---|------|-----------------------|--|--| | | | | Science Lessons | | | | Life Science | | | | | | | Disciplinary | Core Idea: L.5.3A Ecology and Interdependence | | | | | | | All organisms need energy to live and grow. Energy is obtained from | | Level 5 M2 L6–L7 | | | | | the sun. Cells transform the energy that organisms need to perform | | Level 5 M2 L15–L19 | | | | | essential life functions through a complex sequence of reactions in | | Level 5 M2 L24–L26 | | | | | which chemical energy is transferred from one system of interacting | | | | | | | molecules to another. | | | | | | | 5.3A Students will demonstrate an understanding of photosynthesis and the chemical energy necessary for plant growth and survival. | e tr | ansfer of energy from | | | | L.5.3A.1 | Research and communicate the basic process of photosynthesis that is | | Level 5 M2 L6–L7 | | | | | used by plants to convert light energy into chemical energy that can be | | Level 5 M2 L24–L26 | | | | | stored and released to fuel an organism's activities. | | | | | | L.5.3A.2 | Analyze environments that do not receive direct sunlight and devise | | | | | | | explanations as to how photosynthesis occurs, either naturally or | | | | | | | artificially. | | | | | | Disciplinary | Core Idea: L.5.3B Ecology and Interdependence | | | | | | | A major role an organism serves in an ecosystem can be described by | | Level 5 M2 L15–L19 | | | | | the way in which it obtains its energy. Energy is transferred within an | | Level 5 M2 L24–L26 | | | | | ecosystem by producers, consumers, or decomposers. A healthy | | | | | | | ecosystem is one in which a diverse population of life forms can meet | | | | | | | their needs in a relatively stable web of life. | | | | | | | 5.3B Students will demonstrate an understanding of a healthy ecosystem w | | | | | | | and the roles of living things within a food chain and/or food web, including producers, primary and secondary | | | | | | consumers, | and decomposers. | | | | | | L.5.3B.1 | Obtain and evaluate scientific information regarding the characteristics | | Level 5 M2 L1–L2 | | | | | of different ecosystems and the organisms they support. | | | | | | L.5.3B.2 | Develop and use a food chain model to classify organisms as producers, | | Level 5 M2 L1–L2 | |--------------|--|------|--------------------| | | consumers, or decomposers. Trace the energy flow to explain how | | Level 5 M2 L8-L20 | | | each group of organisms obtains energy. | | Level 5 M2 L24-L26 | | L.5.3B.3 | Design and interpret models of food webs to justify what effects the | | Level 5 M2 L20-L26 | | | removal or the addition of a species would have on a specific | | | | | population and/or the ecosystem as a whole. | | | | L.5.3B.4 | Communicate scientific or technical information that explains human | | Level 5 M2 L8-L9 | | | positions in food webs and our potential impacts on these systems. | | | | Physical Sc | ience | | | | Disciplinary | Core Idea: P.5.5A Organization of Matter and Chemical Interactions | | | | | Matter can be segregated into tiny particles that are too small to see | | Level 5 M1 L5-L10 | | | but can be detected by other methods. These tiny particles are referred | | Level 5 M1 L23–L26 | | | to as atoms, which can be combined to form molecules. Substances | | | | | exhibit specific properties that can be observed and measured. | | | | Standard P. | 5.5A Students will demonstrate an understanding of the physical properties | s of | matter. | | P.5.5A.1 | Obtain and evaluate scientific information to describe basic physical | | | | | properties of atoms and molecules. | | | | P.5.5A.2 | Collect, analyze, and interpret data from measurements of the physical | | Level 5 M1 L9–L17 | | | properties of solids, liquids, and gases. | | Level 5 M1 L23-L26 | | P.5.5A.3 | Analyze matter through observations and measurements to classify | | Level 5 M1 L1–L4 | | | materials based on their properties. | | Level 5 M1 L11–L17 | | | | | Level 5 M1 L23–L26 | | P.5.5A.4 | Make and test predictions about how the density of an object affects | | | | | whether the object sinks or floats when placed in a liquid. | | | | P.5.5A.5 | Design a vessel that can safely transport a dense substance through | | | | | water at various distances and under variable conditions. Use an | | | | | engineering design process to define the problem, design, construct, | | | | | evaluate, and improve the vessel. | | | | Disciplinary | Core Idea: P.5.5B Organization of
Matter and Chemical Interactions | | | | | Substances of the same type can be classified by their similar, | | Level 5 M1 L1–L2 | | | observable properties. Substances can be combined in a variety of | | Level 5 M1 L15–L26 | | | ways. A mixture is formed when two or more kinds of matter are | | | | | physically combined. Solutions are a special type of mixture in which | | | | | one substance is distributed evenly into another substance. When the | | | | | physical properties of the components in a mixture are not changed, | | | | | they can be separated in different physical ways. | | | | | 5.5B Students will demonstrate an understanding of mixtures and solutions | i | T | | P.5.5B.1 | Obtain and evaluate scientific information to describe what happens to | | Level 5 M1 L1–L2 | | | the properties of substances in mixtures and solutions. | | Level 5 M1 L13–L26 | | P.5.5B.2 | Analyze and interpret data to communicate that the concentration of a | | | | | solution is determined by the relative amount of solute versus solvent | | | | | in various mixtures. | | | | P.5.5B.3 | Investigate how different variables affect the rate at which a solute will dissolve. | | | | P.5.5B.4 | Design an effective system for separating various mixtures. Use an | | Level 5 M1 L13–L14 | | | engineering design process to define the problem, design, construct, | | | | | evaluate, and improve the system. | | | | Disciplinary | Core Idea: P.5.5C Organization of Matter and Chemical Interactions | | • | | | Physical properties can be observed and measured without changing | | Level 5 M1 L9–L17 | | | the composition of matter. A physical change occurs when the matter's | | Level 5 M1 L23–L26 | | | physical appearance is altered while leaving the composition of the | | | |---------------|---|-------|----------------------| | | matter unchanged. When two or more substances are mixed together, | | | | | a new substance with different properties can sometimes be formed, | | | | | but the total amount (i.e., mass) of the substances is conserved (i.e., | | | | | total mass stays the same). In a chemical change, the composition of | | | | | the original matter is altered to create a new substance. A different | | | | | compound is present at the completion of the chemical change. | | | | Standard P | 2.5.5C Students will demonstrate an understanding of the difference betwee | n pl | nysical and chemical | | changes. | | | | | P.5.5C.1 | Analyze and communicate the results of chemical changes that result in | | Level 5 M1 L11–L26 | | | the formation of new materials. | | | | P.5.5C.2 | Analyze and communicate the results of physical changes to a | | Level 5 M1 L11–L26 | | | substance that results in a reversible change. | | | | P.5.5C.3 | Analyze and interpret data to support claims that when two substances | | Level 5 M1 L9–L17 | | | are mixed, the total weight of matter is conserved. | | Level 5 M1 L23–L26 | | Disciplinar | y Core Idea: P.5.6 Motions, Forces, and Energy | | | | | Gravity is a force that draws objects to Earth. This force acting on an | | Level 5 M4 L3–L4 | | | object near Earth's surface pulls that object toward the planet's center. | | Level 5 M4 L24–L26 | | | The motion of an object can be described in terms of its position, | | | | | direction, and speed. Multiple factors determine the rate and motion | | | | | of an object. Other than Earth, any celestial objects will exert varying | | | | | gravitational pulls on other objects according to their mass and density. | | | | Standard P | 2.5.6 Students will demonstrate an understanding of the factors that affect the | ne r | notion of an object | | through a s | study of Newton's Laws of Motion. | | | | P.5.6.1 | Obtain and communicate information describing gravity's effect on an | | Level 5 M4 L3-L4 | | | object. | | Level 5 M4 L24–L26 | | P.5.6.2 | Predict the future motion of various objects based on past observation | | Level 3 M4 L1-L9 | | | and measurement of position, direction, and speed. | | Level 3 M4 L28-L30 | | P.5.6.3 | Develop and use models to explain how the amount or type of force, | | Level 4 M2 L6-L7 | | | both contact and noncontact, affects the motion of an object. | | | | P.5.6.4 | Plan and conduct scientific investigations to test the effects of balanced | | Level 3 M4 L10-L18 | | | and unbalanced forces on the speed and/or direction of objects in | | Level 3 M4 L28-L30 | | | motion. | | | | P.5.6.5 | Predict how a change of force, mass, and/or friction affects the motion | | | | | of an object to convert potential energy into kinetic energy. | | | | P.5.6.6 | Design a system to increase the effects of friction on the motion of an | | | | | object. Use an engineering design process to define the problem, | | | | | design, construct, evaluate, and improve the system. | | | | Earth and | Space Science | | | | | y Core Idea: E.5.8A Earth and the Universe | | | | • | Astronomy is the study of celestial objects in our solar system and | | Level 5 M4 L1–L2 | | | beyond. A solar system includes one or more suns (stars) and all other | | Level 5 M4 L5–L18 | | | objects orbiting in that system. Planets in our night sky change | | Level 5 M4 L20–L26 | | | positions and are not always visible from Earth as they orbit our sun. | | | | | Stars that can be seen in the night sky lie beyond our solar system and | | | | | appear in patterns called constellations. Constellations can be used for | | | | | navigation and appear to move together across the sky because of | | | | | Earth's rotation and revolution around the sun. | | | | Standard F | .S.8A Students will demonstrate an understanding of the locations of object | ςin | the universe | | J.u.i.dui d L | | J 111 | and diliverse. | | E.5.8A.1 | Develop and use scaled models of Earth's solar system to demonstrate | | | | |---|--|-----|--------------------|--| | 2.3.3, | the size, composition, location, and order of the planets as they orbit | | | | | | the Sun | | | | | E.5.8A.2 | Use evidence to argue why the sun appears brighter than other stars. | | Level 5 M4 L18-L19 | | | | | | Level 5 M4 L24-L26 | | | E.5.8A.3 | Describe how constellations appear to move from Earth's perspective | | Level 5 M4 L1-L2 | | | | throughout the seasons. | | Level 5 M4 L20-L26 | | | E.5.8A.4 | Construct scientific arguments to support claims about the importance | | | | | | of astronomy in navigation and exploration, including the use of | | | | | | telescopes, compasses, and star charts. | | | | | Disciplinary | Core Idea: E.5.8B Earth and the Universe | | | | | | Earth orbits around the sun as the moon orbits around Earth. The | | Level 5 M4 L1–L2 | | | | revolution and rotation of Earth on a tilted axis provide evidence of | | Level 5 M4 L5–L18 | | | | patterns that can be observed, studied, and predicted. | | Level 5 M4 L20–L26 | | | | .8B Students will demonstrate an understanding of the principles that gove | ern | moon phases, day | | | | pearance of objects in the sky, and seasonal changes. | | | | | E.5.8B.1 | Analyze and interpret data from observations and research to explain | | Level 5 M4 L1–L2 | | | | patterns in the location, movement, and appearance of the moon | | Level 5 M4 L13–L17 | | | | throughout a month and over the course of a year. | | Level 5 M4 L24–L26 | | | E.5.8B.2 | Develop and use a model of the Earth-Sun-Moon system to analyze the | | | | | | cyclic patterns of lunar phases, solar and lunar eclipses, and seasons. | | | | | E.5.8B.3 | Develop and use models to explain the factors that result in Earth's | | Level 5 M4 L22–L26 | | | | seasonal changes. | | | | | E.5.8B.4 | Obtain information and analyze how our understanding of the solar | | Level 5 M4 L7–L8 | | | | system has evolved over time. | | | | | Disciplinary | Core Idea: E.5.10 Earth's Resources | | | | | | Human activities can impact natural processes and availability of | | Level 5 M3 L14–L27 | | | | resources. To reduce impacts on the environment (including humans), | | | | | | various best practices can be used. New and improved conservation | | | | | | practices are constantly being developed and tested. | | | | | Standard E.5.10 Students will demonstrate an understanding of the effects of human interaction with Earth and | | | | | | | natural resources can be protected and conserved. | | | | | E.5.10.1 | Collect and organize scientific ideas that individuals and communities | | Level 5 M3 L14–L26 | | | | can use to conserve Earth's natural resources and systems. | | | | | E.5.10.2 | Design a process for better preparing communities to withstand | | Level 4 M1 L12–L17 | | | | manmade or natural disasters. Use an engineering design process to | | | | | | define the problem, design, construct, evaluate, and improve the | | | | | | disaster plan. | | | | | Science and Engineering Practices | | Aligned PhD | | |-----------------------------------|---|-------------|--------------------| | | | | Science Lessons | | 1 | Ask Questions and Define Problems | | Level 5 M1 L1–L2 | | | Ask questions about what would happen if a variable is changed. | | Level 5 M2 L1–L2 | | | Identify scientific (testable) and non-scientific (non-testable) questions. | | Level 5 M2 L21–L23 | | | Ask questions that can be investigated and predict reasonable outcomes | | Level 5 M3 L1–L3 | | | based on patterns such as cause and effect relationships. | | Level 5 M3 L19–L23 | | | Use prior knowledge to describe problems that can be solved. | | Level 5 M4 L1–L2 | | | | | Level 5 M4 L13 | | | Define a simple design problem that can be solved through the development | | |---
--|--------------------| | | of an object, tool, process, or system and includes several criteria for success | | | | and constraints on materials, time, or cost. | | | 2 | Develop and Use Models | Level 5 M1 L1–L2 | | | Identify limitations of models. | Level 5 M1 L5–L10 | | | Collaboratively develop and/or revise a model based on evidence that shows | Level 5 M1 L13–L14 | | | the relationships among variables for frequent and regular occurring events. | Level 5 M1 L23–L26 | | | Develop a model using an analogy, example, or abstract representation to | Level 5 M2 L1–L2 | | | describe a scientific principle or design solution. | Level 5 M2 L6–L7 | | | Develop and/or use models to describe and/or predict phenomena. | Level 5 M2 L14 | | | Develop a diagram or simple physical prototype to convey a proposed | Level 5 M2 L20 | | | object, tool, or process. | Level 5 M3 L1-L3 | | | Use a model to test cause and effect relationships or interactions concerning | Level 5 M3 L6-L16 | | | the functioning of a natural or designed system. | Level 5 M3 L19–L27 | | | | Level 5 M4 L1–L4 | | | | Level 5 M4 L7-L18 | | | | Level 5 M4 L20–L26 | | 3 | Plan and Carry Out Investigations | Level 5 M1 L13–L14 | | | Plan and conduct an investigation collaboratively to produce data to serve as | Level 5 M1 L18–L22 | | | the basis for evidence, using fair tests in which variables are controlled and | Level 5 M2 L3–L5 | | | the number of trials considered. | Level 5 M3 L10–L11 | | | Evaluate appropriate methods and/or tools for collecting data. | Level 5 M4 L5–L6 | | | Make observations and/or measurements to produce data to serve as the | Level 5 M4 L18–L19 | | | basis for evidence for an explanation of a phenomenon or test a design | Level 3 M4 L10-L13 | | | solution. | | | | | | | | Make predictions about what would happen if a variable changes. Test two different models of the same proposed abject tool or proposed to the same proposed abject | | | | Test two different models of the same proposed object, tool, or process to determine which better process aritaria for average. | | | _ | determine which better meets criteria for success. | 1 15 844 145 147 | | 4 | Analyze and Interpret Data | Level 5 M1 L15–L17 | | | Represent data in tables and/or various graphical displays (bar graphs, | Level 5 M2 L3–L5 | | | pictographs, and/or pie charts) to reveal patterns that indicate relationships. | Level 5 M2 L8–L13 | | | Analyze and interpret data to make sense of phenomena, using logical | Level 5 M2 L15–L17 | | | reasoning, mathematics, and/or computation. | Level 5 M3 L4–L5 | | | Compare and contrast data collected by different groups in order to discuss | Level 5 M3 L14–L16 | | | similarities and differences in their findings. | Level 5 M4 L14–L15 | | | Analyze data to refine a problem statement or the design of a proposed | | | | object, tool, or process. | | | | Use data to evaluate and refine design solutions. | | | 5 | Use Mathematics and Computational Thinking | Level 5 M1 L3-L4 | | | Decide if qualitative or quantitative data are best to determine whether a | Level 5 M1 L15–L22 | | | proposed object or tool meets criteria for success. | Level 5 M3 L10–L11 | | | Organize simple data sets to reveal patterns that suggest relationships. | Level 5 M3 L24–L27 | | | • Describe, measure, estimate, and/or graph quantities such as area, volume, | Level 5 M4 L5-L6 | | | weight, and time to address scientific and engineering questions and | | | | problems. | | | | Create and/or use graphs and/or charts generated from simple algorithms to | | | | compare alternative solutions to an engineering problem. | | | 6 | Construct Explanations and Design Solutions | Level 5 M1 L5–L6 | | | Construct an explanation of observed relationships (e.g., the distribution of | Level 5 M1 L11–L12 | | | plants in the backyard). | Level 5 M1 L23–L26 | | | E · · · · · · · · · · · · · · · · · | | | | • Use evidence (e.g., measurements, observations, patterns) to construct or | Level 5 M2 L12–L13 | |---|--|--------------------| | | support an explanation or design a solution to a problem. | Level 5 M2 L15–L17 | | | • Identify the evidence that supports particular points in an explanation. | Level 5 M2 L21–L26 | | | Apply scientific ideas to solve design problems. | Level 5 M3 L17–L23 | | | Generate and compare multiple solutions to a problem based on how well | Level 5 M4 L3–L4 | | | they meet the criteria and constraints of the design solution. | Level 5 M4 L9-L12 | | | | Level 5 M4 L20–L26 | | 7 | Engage in Argument from Evidence | Level 5 M1 L3–L4 | | | Compare and refine arguments based on an evaluation of the evidence | Level 5 M2 L3–L5 | | | presented. | Level 5 M2 L8–L11 | | | • Distinguish among facts, reasoned judgment based on research findings, and | Level 5 M2 L21–L23 | | | speculation in an explanation. | Level 5 M3 L19–L23 | | | Respectfully provide and receive critiques from peers about a proposed | Level 5 M4 L5–L6 | | | procedure, explanation, or model by citing relevant evidence and posing | Level 5 M4 L13–L17 | | | specific questions. | Level 5 M4 L20–L21 | | | • Construct and/or support an argument with evidence, data, and/or a model. | | | | Use data to evaluate claims about cause and effect. | | | | Make a claim about the merit of a solution to a problem by citing relevant | | | | evidence about how it meets the criteria and constraints of the problem. | | | 8 | Obtain, Evaluate, and Communicate Information | Level 5 M2 L6–L7 | | | Read and comprehend grade-appropriate complex texts and/or other | Level 5 M2 L10–L11 | | | reliable media to summarize and obtain scientific and technical ideas and | Level 5 M2 L18–L20 | | | describe how they are supported by evidence. | Level 5 M3 L9 | | | Compare and/or combine complex texts and/or other reliable media to | Level 5 M3 L14–L16 | | | support the engagement in other scientific and/or engineering practices. | Level 5 M3 L19–L27 | | | Combine information in written text with that contained in corresponding | Level 5 M4 L18–L19 | | | tables, diagrams, and/or charts to support the engagement in other scientific | | | | and/or engineering practices. | | | | Obtain and combine information from books and/or other reliable media to | | | | explain phenomena or solutions to a design problem. | | | | • Communicate scientific and/or technical information orally and/or in written | | | | formats, including various forms of media as well as tables, diagrams, and | | | | charts. | | | | | | | Crosscutting Concepts | | Aligned PhD | | |-----------------------|--|-------------|---| | | | | Science Lessons | | 1 | Patterns Similarities and differences in patterns can be used to sort, classify, communicate, and analyze simple rates of change for natural phenomena and designed products. Patterns of change can be used to make predictions. Patterns can be used as evidence to support an explanation. | | Level 5 M1 L7–L8
Level 5 M2 L1–L5
Level 5 M2 L8–L9
Level 5 M2 L15–L17
Level 5 M3 L6–L9
Level 5 M4 L1–L17 | | | ratterns can be used as
evidence to support an explanation. | | Level 5 M4 L20–L26 | | 2 | Cause and Effect Cause and effect relationships are routinely identified, tested, and used to explain change. | | Level 5 M1 L1–L2
Level 5 M1 L5–L6
Level 5 M1 L9–L10 | | | Events that occur together with regularity might or might not be a cause and
effect relationship. | | Level 5 M1 L18–L22
Level 5 M2 L3–L7 | | | | Level 5 M2 L12–L13 | |---|--|--------------------| | | | Level 5 M2 L18–L23 | | | | Level 5 M3 L6–L8 | | | | Level 5 M3 L12–L18 | | | | Level 5 M4 L5–L6 | | | | Level 5 M4 L24–L26 | | 3 | Scale, Proportion, and Quantity | Level 5 M1 L3–L4 | | | Natural objects and/or observable phenomena exist from the very small to | Level 5 M1 L13–L17 | | | the immensely large or from very short to very long time periods. | Level 5 M1 L23–L26 | | | Standard units are used to measure and describe physical quantities such as | Level 5 M2 L10-L11 | | | weight, time, temperature, and volume. | Level 5 M3 L1–L5 | | | | Level 5 M3 L10-L11 | | | | Level 5 M3 L24-L27 | | | | Level 5 M4 L18-L19 | | | | Level 5 M4 L24-L26 | | 4 | Systems and System Models | Level 5 M1 L3-L4 | | | A system is a group of related parts that make up a whole and can carry out | Level 5 M1 L15-L17 | | | functions its individual parts cannot. | Level 5 M2 L1-L2 | | | • A system can be described in terms of its components and their interactions. | Level 5 M2 L6-L11 | | | | Level 5 M2 L14 | | | | Level 5 M2 L18-L19 | | | | Level 5 M2 L24-L26 | | | | Level 5 M3 L1-L9 | | | | Level 5 M3 L12–L13 | | | | Level 5 M3 L19-L27 | | | | Level 5 M4 L1–L2 | | | | Level 5 M4 L7-L23 | | 5 | Energy and Matter | Level 5 M1 L5–L8 | | | Matter is made of particles. | Level 5 M1 L13-L14 | | | Matter flows and cycles can be tracked in terms of the weight of the | Level 5 M1 L23-L26 | | | substances before and after a process occurs. The total weight of the | Level 5 M2 L6-L11 | | | substances does not change. This is what is meant by conservation of | Level 5 M2 L14-L19 | | | matter. Matter is transported into, out of, and within systems. | Level 5 M2 L24-L26 | | | Energy can be transferred in various ways and between objects. | Level 5 M3 L10-L11 | | | | Level 5 M4 L3-L4 | | 6 | Structure and Function | Level 3 M1 L21–L26 | | | Different materials have different substructures, which can sometimes be | Level 3 M2 L1-L3 | | | observed. | Level 3 M2 L9-L12 | | | Substructures have shapes and parts that serve functions. | Level 3 M3 L4–L6 | | | | Level 3 M3 L21–L28 | | | | Level 4 M3 L4-L6 | | | | Level 4 M3 L20 | | | | Level 4 M3 L24–L25 | | | | Level 4 M3 L29-L31 | | | | Level 4 M4 L9 | | | | Level 4 M4 L24–L26 | | 7 | Stability and Change | Level 5 M1 L1–L2 | | | Change is measured in terms of differences over time and may occur at | Level 5 M1 L9–L12 | | | different rates. | Level 5 M1 L18–L26 | | | | Level 5 M2 L12–L13 | | • | Some systems appear stable, but over long periods of time will eventually | Level 5 M2 L20 | |---|---|--------------------| | | change. | Level 5 M2 L24–L26 | | | | Level 5 M3 L14-L18 | | | | Level 5 M4 L5-L6 | | | | Level 5 M4 L9–L12 |