

South Dakota Science Standards Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 3

The Grade 3 South Dakota Science Standards are fully covered by the Level 3 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 3 Sta	ndards	Aligned PhD
		Science Lessons
Physical Sci	ence	
Motion and	Stability: Forces and Interactions	
3-PS2-1	Plan and carry out an investigation to provide evidence of the effects	Level 3 M4 L10-L18
	of balanced and unbalanced forces on the motion of an object.	Level 3 M4 L28-L30
3-PS2-2	Make observations and/or measurements of an object's motion to	Level 3 M4 L1–L9
	provide evidence for how a pattern can be used to predict future motion.	Level 3 M4 L28–L30
3-PS2-3	Ask questions about cause and effect relationships of electric or	Level 3 M4 L19-L21
	magnetic interactions between two objects not in contact with each other.	Level 3 M4 L28–L30
3-PS2-4	Define a simple design problem that can be solved by applying scientific ideas about magnets.	Level 3 M4 L22–L30
Life Science		
From Mole	cules to Organisms: Structures and Processes	
3-LS1-1	Develop models to describe that organisms have unique and diverse	Level 3 M3 L7–L8
	life cycles but all have in common birth, growth, reproduction, and death.	Level 3 M3 L23–L28
Ecosystems	: Interactions, Energy, and Dynamics	
3-LS2-1	Construct an argument that some animals form groups that help	Level 3 M2 L13-L15
	members survive.	Level 3 M2 L26-L28
Heredity: Ir	heritance and Variation of Traits	
3-LS3-1	Analyze and interpret data to provide evidence that plants and	Level 3 M3 L1–L6
	animals have traits inherited from parents and that variations of	Level 3 M3 L14-L18
	these traits exist in a group of similar organisms.	Level 3 M3 L26–L28
3-LS3-2	Use evidence and reasoning to support the explanation that traits can	Level 3 M3 L9-L13
	be influenced by the environment.	Level 3 M3 L19–L20
		Level 3 M3 L26–L28

Biological Un	nity and Diversity	
3-LS4-1	Analyze and interpret data from fossils to provide evidence of the	Level 3 M2 L1–L8
	organisms and the environments in which they lived long ago.	Level 3 M2 L26-L28
3-LS4-2	Use evidence and reasoning to construct an explanation for how the	Level 3 M3 L21-L28
	variations in characteristics among individuals of the same species	
	may provide advantages in surviving, finding mates, and reproducing.	
3-LS4-3	Construct an argument with evidence how some organisms thrive,	Level 3 M2 L1–L2
	some struggle to survive, and some cannot survive in a particular	Level 3 M2 L9-L12
	habitat.	Level 3 M2 L16-L19
		Level 3 M2 L22–L28
3-LS4-4	Make a claim about the merit of a solution to a problem caused when	Level 3 M2 L16–L28
	the environment changes and the types of plants and animals that	
	live there may change.	
Earth and Sp		
Earth's Syste		
3-ESS2-1	Represent data in tables and graphical displays to describe typical	Level 3 M1 L1–L15
	weather conditions expected during a particular season.	Level 3 M1 L19-L20
		Level 3 M1 L27–L29
3-ESS2-2	Obtain and combine information to describe climates in different	Level 3 M1 L11–L15
	regions of the world.	Level 3 M1 L27–L29
Earth and Hu	ıman Activity	
3-ESS3-1	Make a claim about the merit of a design solution that reduces the	Level 3 M1 L1–L3
	impacts of a weather-related hazard.	Level 3 M1 L16–L29
Engineering I	Design	
3-5-ETS1-1	Define a simple design problem reflecting a need or a want that	Level 3 M1 L21-L26
	includes specified criteria for success and constraints on materials,	Level 3 M4 L23-L27
	time, or cost.	
3-5-ETS1-2	Generate and compare multiple possible solutions to a problem	Level 4 M1 L12-L17
	based on how well each is likely to meet the criteria and constraints	Level 5 M3 L19-L23
	of the problem.	
3-5-ETS1-3	Plan and carry out fair tests in which variables are controlled and	Level 3 M2 L23-L27
	failure points are considered to identify aspects of a model or	Level 3 M4 L23-L27
	prototype that can be improved.	

Sci	Science and Engineering Practices		Aligned PhD
			Science Lessons
1	Asking Questions and Defining Problems		Level 3 M1 L1–L3
	Ask questions about what would happen if a variable is changed.		Level 3 M1 L21–L26
	Identify scientific (testable) and nonscientific (non-testable) questions.		Level 3 M2 L1–L2
	Ask questions that can be investigated and predict reasonable outcomes		Level 3 M3 L1-L3
	based on patterns, such as cause and effect relationships.		Level 3 M3 L12-L13
	Use prior knowledge to describe problems that can be solved.		Level 3 M4 L1–L3
	Define a simple design problem that can be solved through the development		Level 3 M4 L7–L9
	of an object, tool, process, or system and includes several criteria for success		Level 3 M4 L15-L16
	and constraints on materials, time, or cost.		Level 3 M4 L19–L30
3	Planning and Carrying Out Investigations		Level 3 M2 L4–L5
			Level 3 M3 L12-L13
			Level 3 M4 L7–L18

	 Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and 	Level 3 M4 L23-L30
	the number of trials is considered.	
	Evaluate appropriate methods and/or tools for collecting data.	
	Make observations and/or measurements to produce data to serve as the	
	basis for evidence for an explanation of a phenomenon or to test a design	
	solution.	
	Make predictions about what would happen if a variable changes.	
	Test two different models of the same proposed object, tool, or process to	
	determine which better meets criteria for success.	
4	Analyzing and Interpreting Data	Level 3 M1 L4–L15
	Represent data in tables and/or various graphical displays (bar graphs,	Level 3 M1 L19-L20
	pictographs, and/or pie charts) to reveal patterns that indicate relationships.	Level 3 M1 L27-L29
	Analyze and interpret data to make sense of phenomena, using logical	Level 3 M2 L3-L8
	reasoning, mathematics, and/or computation.	Level 3 M2 L16-L19
	Compare and contrast data collected by different groups in order to discuss	Level 3 M3 L4-L8
	similarities and differences in their findings.	Level 3 M3 L14-L20
	Analyze data to refine a problem statement or the design of a proposed	Level 3 M4 L4-L9
	object, tool, or process.	
	Use data to evaluate and refine design solutions.	
6	Constructing Explanations and Designing Solutions	Level 3 M1 L13-L15
	Construct an explanation of observed relationships (e.g., the distribution of	Level 3 M1 L18
	plants in the back yard).	Level 3 M1 L21-L29
	Use evidence (e.g., measurements, observations, patterns) to construct or	Level 3 M2 L6-L8
	support an explanation or design a solution to a problem.	Level 3 M2 L22-L28
	Identify the evidence that supports particular points in an explanation.	Level 3 M3 L9-L11
	Apply scientific ideas to solve design problems.	Level 3 M3 L14-L15
	Generate and compare multiple solutions to a problem based on how well	Level 3 M3 L21-L28
	they meet the criteria and constraints of the design solution.	Level 3 M4 L10-L14
		Level 3 M4 L19-L21
		Level 3 M4 L28-L30
7	Engaging in Argument from Evidence	Level 3 M1 L21–L26
	Compare and refine arguments based on an evaluation of the evidence	Level 3 M2 L9-L15
	presented.	Level 3 M2 L20-L21
	Distinguish among facts, reasoned judgment based on research findings, and	Level 3 M3 L16-L20
	speculation in an explanation.	Level 3 M4 L10-L14
	Respectfully provide and receive critiques from peers about a proposed	
	procedure, explanation, or model by citing relevant evidence and posing	
	specific questions.	
	Construct and/or support an argument with evidence, data, and/or a model.	
	Use data to evaluate claims about cause and effect.	
	Make a claim about the merit of a solution to a problem by citing relevant	
	evidence about how it meets the criteria and constraints of the problem.	
8	Obtaining, Evaluating, and Communicating Information	Level 3 M1 L16–L17
	Read and comprehend grade-appropriate complex texts and/or other	Level 3 M2 L13-L15
	reliable media to summarize and obtain scientific and technical ideas and	Level 3 M2 L20–L21
	describe how they are supported by evidence.	Level 3 M4 L22
	Compare and/or combine across complex texts and/or other reliable media	
1	to support an investigation or design.	

- Combine information in written text with that contained in corresponding tables, diagrams, and/or charts to support the engagement in other scientific and/or engineering practices.
- Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem.
- Communicate scientific and/or technical information orally and/or in written formats, including various forms of media as well as tables, diagrams, and charts.

Disciplin	ary Core Ideas	Aligned PhD
		Science Lessons
PS2.A	Forces and Motion	
	Using observation and measurement to determine the affect of	Level 3 M4 L10–L18
	balanced and unbalanced forces on an objects motion, and to	Level 3 M4 L28–L30
	determine its future motion.	
PS2.B	Types of Interactions	
	Using scientific ideas to ask questions and conduct investigations about	Level 3 M4 L19–L30
	cause and effect relationships pertaining to gravitational, electric, and	
	magnetic interactions.	
LS1.B	Growth and Development of Organisms	
	Developing models to describe both common and unique life cycle	Level 3 M3 L7–L8
	processes in different organisms.	Level 3 M3 L23–L28
LS2.C	Ecosystem Dynamics, Functioning, and Resilience	
	Using evidence and reasoning to describe how certain characteristics of	Level 3 M2 L16–L28
	the same species and different species within an ecosystem may provide	
	advantages in survival, mating, and reproduction.	
LS2.D	Social Interactions and Group Behavior	
	Making arguments about how some animals form groups to help	Level 3 M2 L13–L15
	members survive.	Level 3 M2 L22–L28
LS3.A	Inheritance of Traits	
	Using data to provide evidence of inherited traits in plants and animals.	Level 3 M3 L14–L18
		Level 3 M3 L26–L28
LS3.B	Variation of Traits	
	Using data to provide evidence of variable traits in plants and animals.	Level 3 M3 L1–L18
	Understanding that traits can be influenced by both inheritance and	Level 3 M3 L23–L28
	environment.	
LS4.A	Evidence of Common Ancestry and Diversity	
	Analyzing data to describe organisms and environments that existed	Level 3 M2 L1–L5
	long ago.	Level 3 M2 L26–L28
LS4.B	Natural Selection	
	Using evidence and reasoning to describe how certain characteristics of	Level 3 M3 L21–L28
	the same species may provide advantages in survival, mating, and	
	reproduction.	
LS4.C	Adaptation	
	Explaining the impact that habitat, genetic inheritance, and ability to	Level 3 M2 L1–L2
	adapt can have on an organism's chances of survival. Understanding	Level 3 M2 L9–L12
		Level 3 M2 L16–L19

	that plants and animals might change as a result of changes in the	Level 3 M2 L22–L28
	environment.	
LS4.D	Biodiversity and Humans	
	Explaining why different members of the same species might have	Level 3 M2 L16–L21
	similar or different characteristics.	Level 3 M2 L26-L28
ESS2.D	Weather and Climate	
	Using data to describe weather patterns during specific seasons, and in	Level 3 M1 L1–L15
	specific climates throughout the world.	Level 3 M1 L19–L20
		Level 3 M1 L27–L29
ESS3.B	Natural Hazards	
	Providing a design solution that protects against severe weather-related	Level 3 M1 L1–L3
	hazards.	Level 3 M1 L16–L29

Cro	osscutting Concepts	Aligned PhD
		Science Lessons
1	Patterns	Level 3 M1 L11-L15
	Similarities and differences in patterns can be used to sort, classify,	Level 3 M1 L19-L20
	communicate, and analyze simple rates of change for natural phenomena	Level 3 M1 L27-L29
	and designed products.	Level 3 M2 L3-L8
	Patterns of change can be used to make predictions.	Level 3 M2 L13-L15
	Patterns can be used as evidence to support an explanation.	Level 3 M3 L1-L8
		Level 3 M3 L14-L18
		Level 3 M3 L26-L28
		Level 3 M4 L1-L9
		Level 3 M4 L28-L30
2	Cause and Effect	Level 3 M1 L1-L3
	Cause and effect relationships are routinely identified, tested, and used to	Level 3 M1 L16–L18
	explain change.	Level 3 M1 L21–L29
	Events that occur together with regularity might or might not be a cause and	Level 3 M2 L9-L12
	effect relationship.	Level 3 M2 L16–L28
		Level 3 M3 L9-L13
		Level 3 M3 L19–L25
		Level 3 M4 L1-L3
		Level 3 M4 L10-L30
3	Scale, Proportion, and Quantity	Level 3 M1 L4-L10
	Natural objects and/or observable phenomena exist from the very small to	Level 3 M2 L1-L2
	the immensely large or from very short to very long time periods.	Level 3 M3 L1-L3
	Standard units are used to measure and describe physical quantities such as	Level 3 M3 L14-L15
	weight, time, temperature, and volume.	
4	Systems and System Models	Level 3 M1 L1–L3
	A system is a group of related parts that make up a whole and can carry out	Level 3 M1 L16–L20
	functions its individual parts cannot.	Level 3 M2 L6–L15
	• A system can be described in terms of its components and their interactions.	Level 3 M2 L20-L28
		Level 3 M3 L9-L11
		Level 3 M4 L1-L30

Connections to Engineering, Technology, and Applications of Science		Aligned PhD Science Lessons
 Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. Knowledge of relevant scientific concepts and research findings is important in engineering. Science and technology support each other. 		Level 3 M4 L23–L27
 Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. People's needs and wants change over time, as do their demands for new and improved technologies. When new technologies become available, they can bring about changes in the way people live and interact with one another. 		Level 3 M1 L21–L26 Level 3 M4 L22–L27

South Dakota Science Standards Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 4

The Grade 4 South Dakota Science Standards are fully covered by the Level 4 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 4 Sta	andards	Aligned PhD
		Science Lessons
Physical Sc	ience	
Energy		
4-PS3-1	Use evidence to construct an explanation relating the speed of an	Level 4 M2 L6–L7
	object to the energy of that object.	Level 4 M2 L24–L26
4-PS3-2	Make observations to provide evidence for how energy can be	Level 4 M2 L1–L5
	transferred from place to place by sound, light, heat, and electric	Level 4 M2 L10-L11
	currents.	Level 4 M2 L24–L26
4-PS3-3	Ask questions and predict outcomes about the changes in energy that	Level 4 M2 L8-L9
	occur when objects collide.	Level 4 M2 L24–L26
4-PS3-4	Design, test, and refine a device that converts energy from one form	Level 4 M2 L12-L26
	to another.	
Waves and	Their Applications in Technologies for Information Transfer	
4-PS4-1	Develop a model of waves to describe patterns in terms of amplitude	Level 4 M3 L7-L14
	and wavelength and to provide evidence that waves can cause	Level 4 M3 L29-L31
	objects to move.	
4-PS4-2	Develop a model to describe how light reflecting from objects and	Level 4 M4 L1-L13
	entering the eye allows objects to be seen.	Level 4 M4 L20-L26
4-PS4-3	Create and compare multiple solutions that use patterns to transfer	Level 4 M4 L14-L19
	information.	Level 4 M4 L24-L26
Life Science	e	
From Mole	cules to Organisms: Structures and Processes	
4-LS1-1	Construct an argument that plants and animals have internal and	Level 4 M3 L1-L6
	external structures that function to support survival, growth,	Level 4 M3 L20
	behavior, and reproduction.	Level 4 M3 L26-L31
4-LS1-2	Use a model to describe that animals receive different types of	Level 4 M3 L1–L6
	information through their senses, process the information in their	Level 4 M3 L15-L25
	brain, and respond to the information in different ways.	Level 4 M3 L29-L31

Earth and Sp	Earth and Space Science				
Earth's Place	Earth's Place in the Universe				
4-ESS1-1	Identify evidence from patterns in rock formations and fossils in rock		Level 4 M1 L1–L5		
	layers to support an explanation for changes in a landscape over time.		Level 4 M1 L19-L20		
			Level 4 M1 L25-L27		
Earth's Syste	ms				
4-ESS2-1	Make observations and/or measurements to provide evidence of the		Level 4 M1 L6-L11		
	effects of weathering or the rate of erosion by water, ice, wind, or		Level 4 M1 L25–L27		
	vegetation.				
4-ESS2-2	Analyze and interpret data from maps to describe patterns of Earth's		Level 4 M1 L18–L20		
	features.		Level 4 M1 L25–L27		
Earth and Hu	man Activity				
4-ESS3-1	Obtain and combine information to describe that energy and fuels are		Level 4 M1 L21–L27		
	derived from natural resources and their uses affect the environment.				
4-ESS3-2	Generate and compare multiple solutions to reduce the impacts of		Level 4 M1 L12–L17		
	natural Earth processes on humans.		Level 4 M1 L25–L27		
Engineering I	Design				
3-5-ETS1-1	Define a simple design problem reflecting a need or a want that		Level 4 M2 L17-L23		
	includes specified criteria for success and constraints on materials,				
	time, or cost.				
3-5-ETS1-2	Generate and compare multiple possible solutions to a problem		Level 4 M1 L12-L17		
	based on how well each is likely to meet the criteria and constraints				
	of the problem.				
3-5-ETS1-3	Plan and carry out fair tests in which variables are controlled and		Level 3 M2 L23-L27		
	failure points are considered to identify aspects of a model or		Level 3 M4 L23-L27		
	prototype that can be improved.		Level 5 M1 L18–L22		

Sci	ence and Engineering Practices	Aligned PhD
		Science Lessons
1	Asking Questions and Defining Problems	Level 4 M1 L1–L2
	Ask questions about what would happen if a variable is changed.	Level 4 M2 L1-L3
	• Identify scientific (testable) and nonscientific (non-testable) questions.	Level 4 M2 L8–L9
	Ask questions that can be investigated and predict reasonable outcomes	Level 4 M3 L1-L3
	based on patterns, such as cause and effect relationships.	Level 4 M3 L15-L19
	Use prior knowledge to describe problems that can be solved.	Level 4 M4 L1–L2
	Define a simple design problem that can be solved through the	
	development of an object, tool, process, or system and includes several	
	criteria for success and constraints on materials, time, or cost.	
2	Developing and Using Models	Level 4 M1 L1–L2
	Identify limitations of models.	Level 4 M2 L1–L3
	Collaboratively develop and/or revise a model based on evidence that	Level 4 M2 L8-L11
	shows the relationships among variables for frequent and regular occurring	Level 4 M2 L15-L16
	events.	Level 4 M3 L1-L3
	Develop a model using an analogy, example, or abstract representation to	Level 4 M3 L7–L11
	describe a scientific principle or design solution.	Level 4 M4 L1–L8
	 Develop and/or use models to describe and/or predict phenomena. 	Level 4 M4 L10-L23

	Develop a diagram or simple physical prototype to convey a proposed	
	object, tool, or process.	
	 Use a model to test cause and effect relationships or interactions 	
	concerning the functioning of a natural or designed system.	
3	Planning and Carrying Out Investigations	Level 4 M1 L6–L11
	Plan and conduct an investigation collaboratively to produce data to serve	Level 4 M1 L21–L22
	as the basis for evidence, using fair tests in which variables are controlled	Level 4 M2 L6–L7
	and the number of trials is considered.	Level 4 M2 L10–L14
	 Evaluate appropriate methods and/or tools for collecting data. 	Level 4 M3 L15-L19
	Make observations and/or measurements to produce data to serve as the	Level 4 M4 L7–L9
	basis for evidence for an explanation of a phenomenon or to test a design	Level 4 M4 L14-L16
	solution.	Level 4 M4 L20–L23
	 Make predictions about what would happen if a variable changes. 	
	Test two different models of the same proposed object, tool, or process to	
	determine which better meets criteria for success.	
4	Analyzing and Interpreting Data	Level 4 M1 L12–L20
	 Represent data in tables and/or various graphical displays (bar graphs, 	Level 4 M1 L23-L24
	pictographs, and/or pie charts) to reveal patterns that indicate	Level 4 M4 L10-L13
	relationships.	
	Analyze and interpret data to make sense of phenomena, using logical	
	reasoning, mathematics, and/or computation.	
	Compare and contrast data collected by different groups in order to discuss	
	similarities and differences in their findings.	
	Analyze data to refine a problem statement or the design of a proposed	
	object, tool, or process.	
	Use data to evaluate and refine design solutions.	
6	Constructing Explanations and Designing Solutions	Level 4 M1 L3-L7
	• Construct an explanation of observed relationships (e.g., the distribution of	Level 4 M1 L12–L18
	plants in the back yard).	Level 4 M1 L21–L22
	 Use evidence (e.g., measurements, observations, patterns) to construct or 	Level 4 M1 L25–L27
	support an explanation or design a solution to a problem.	Level 4 M2 L4–L5
	• Identify the evidence that supports particular points in an explanation.	Level 4 M2 L15-L26
	Apply scientific ideas to solve design problems.	Level 4 M3 L24–L25
	Generate and compare multiple solutions to a problem based on how well	Level 4 M3 L29-L31
	they meet the criteria and constraints of the design solution.	Level 4 M4 L14–L26
7	Engaging in Argument from Evidence	Level 4 M3 L4–L5
	Compare and refine arguments based on an evaluation of the evidence	Level 4 M3 L21–L23
	presented.	Level 4 M3 L26-L28
	Distinguish among facts, reasoned judgment based on research findings,	Level 4 M4 L7–L8
	and speculation in an explanation.	
	Respectfully provide and receive critiques from peers about a proposed	
	procedure, explanation, or model by citing relevant evidence and posing	
	specific questions.	
	 Construct and/or support an argument with evidence, data, and/or a 	
	model.	
	Use data to evaluate claims about cause and effect.	
	Make a claim about the merit of a solution to a problem by citing relevant	
	evidence about how it meets the criteria and constraints of the problem.	
8	Obtaining, Evaluating, and Communicating Information	Level 4 M1 L3–L5
		Level 4 M1 L23-L24

Read and comprehend grade-appropriate complex texts and/or other	Level 4 M3 L4-L6
reliable media to summarize and obtain scientific and technical ideas and	Level 4 M3 L10-L11
describe how they are supported by evidence.	Level 4 M3 L20-L23
Compare and/or combine across complex texts and/or other reliable media	Level 4 M3 L26-L28
to support the engagement in other scientific and/or engineering practices.	Level 4 M4 L17-L19
Combine information in written text with that contained in corresponding	
tables, diagrams, and/or charts to support the engagement in other	
scientific and/or engineering practices.	
Obtain and combine information from books and/or other reliable media to	
explain phenomena or solutions to a design problem.	
Communicate scientific and/or technical information orally and/or in	
written formats, including various forms of media as well as tables,	
diagrams, and charts.	

Disciplin	ary Core Ideas	Aligned PhD Science Lessons
PS3.A	Definitions of Energy	
	Defining the relationship between energy and motion, sound, light,	Level 4 M2 L1-L3
	heat, electricity, and collisions.	Level 4 M2 L10-L11
		Level 4 M2 L15–L16
		Level 4 M2 L24-L26
PS3.B	Conservation of Energy and Energy Transfer	
	Describing energy transfer in various forms (motion, sound, light, heat,	Level 4 M2 L1-L3
	electricity, and collisions).	Level 4 M2 L10-L26
PS3.C	Relationship between Energy and Forces	
	Understanding the impact of energy transfer on various forces, and	Level 4 M2 L8-L9
	forces on energy transfer.	Level 4 M2 L24-L26
PS3.D	Energy in Chemical Processes and Everyday Life	
	Designing a device capable of converting energy from one form to	Level 4 M2 L12-L14
	another. Use models to describe energy conversion from sunlight to	Level 4 M2 L24-L26
	various functions in living species.	
PS4.A	Wave Properties	
	Developing a model to describe wave and light patterns.	Level 4 M3 L7–L11
PS4.B	Electromagnetic Radiation	
	Developing a model to describe radiation (wave) and light patterns.	Level 4 M4 L1-L13
		Level 4 M4 L20-L26
PS4.C	Information Technologies and Instrumentation	
	Developing and optimizing multiple pattern solutions to information	Level 4 M4 L14-L19
	transfer.	Level 4 M4 L24–L26
LS1.A	Structure and Function	
	Making an argument about how the structure and function of plant and	Level 4 M3 L1–L6
	animal anatomy can support growth, behavior, and reproduction.	Level 4 M3 L20
		Level 4 M3 L26-L31
LS1.D	Information Processing	
	Modeling and describing the processing of the five senses to the brain to	Level 4 M3 L1–L6
	support survival, growth, behavior, and reproduction.	Level 4 M3 L15-L25
		Level 4 M3 L29-L31

		Level 4 M4 L10-L13
ESS1.C	The History of Planet Earth	
	Utilizing patterns in rock formations and fossils to describe changes in	Level 4 M1 L1–L5
	the Earth over time.	Level 4 M1 L19–L20
		Level 4 M1 L25–L27
ESS2.A	Earth Materials and Systems	
	Making observations and collecting data as evidence of weathering or	Level 4 M1 L6–L11
	erosion. Describing the interaction of the geosphere, biosphere,	Level 4 M1 L25–L27
	hydrosphere, and/or atmosphere.	
ESS2.B	Plate Tectonics and Large-Scale System Interactions	
	Analyzing and interpreting data from Earth maps to describe physical	Level 4 M1 L18–L20
	patterns and features on the Earth's surface.	Level 4 M1 L25–L27
ESS2.E	Biogeology	
	Using fossils as evidence to support changes in the Earth's landscape	Level 4 M1 L6–L11
	over time.	Level 4 M1 L25–L27
ESS3.A	Natural Resources	
	Using data and observations to describe how energy and fuel are	Level 4 M1 L21–L27
	derived from Earth's natural resources.	
ESS3.B	Natural Hazards	
	Providing a design solution that protects against severe weather-related	Level 4 M1 L12–L17
	hazards.	Level 4 M1 L25–L27
ETS1.A	Defining and Delimiting an Engineering Problem	
	Understanding that solutions to a problem are limited by the availability	Level 4 M2 L17–L26
	of materials and resources. These limitations can be minimized through	
	the optimization of design.	
ETS1.B	Developing Possible Solutions	
	Researching a problem through available resources, such as the	Level 4 M1 L12–L17
	internet, library, or observation, and brainstorming prior to generating a	Level 4 M4 L20–L23
	design strategy.	
ETS1.C	Optimizing the Design Solution	
	Comparing designs, looking for the best possible solution within a given	Level 4 M1 L12–L17
	set of constraints.	Level 4 M4 L20–L23

Cro	Crosscutting Concepts		Aligned PhD
			Science Lessons
1	Patterns		Level 4 M1 L1-L5
	Similarities and differences in patterns can be used to sort, classify,		Level 4 M1 L18-L22
	communicate, and analyze simple rates of change for natural phenomena		Level 4 M2 L4-L5
	and designed products.		Level 4 M2 L8-L11
	Patterns of change can be used to make predictions.		Level 4 M2 L24-L26
	Patterns can be used as evidence to support an explanation.		Level 4 M3 L1-L3
			Level 4 M3 L7-L11
			Level 4 M3 L20
			Level 4 M3 L24-L28
			Level 4 M4 L1-L4
			Level 4 M4 L7–L8

		<u> </u>
		Level 4 M4 L17–L23
2	Cause and Effect	Level 4 M1 L6–L17
	 Cause and effect relationships are routinely identified, tested, and used to 	Level 4 M1 L19–L20
	explain change.	Level 4 M1 L23–L27
	• Events that occur together with regularity might or might not be a cause and	Level 4 M2 L1–L7
	effect relationship.	Level 4 M2 L10–L14
		Level 4 M2 L24–L26
		Level 4 M3 L6–L11
		Level 4 M3 L15–L23
		Level 4 M4 L3–L16
		Level 4 M4 L24–L26
4	Systems and System Models	Level 4 M1 L1–L2
	A system is a group of related parts that make up a whole and can carry out	Level 4 M1 L12–L17
	functions its individual parts cannot.	Level 4 M1 L21–L24
	• A system can be described in terms of its components and their interactions.	Level 4 M2 L1–L11
		Level 4 M2 L15-L26
		Level 4 M3 L4–L5
		Level 4 M3 L7–L9
		Level 4 M3 L15-L19
		Level 4 M3 L21–L23
		Level 4 M3 L26-L31
		Level 4 M4 L1–L8
		Level 4 M4 L10-L23
5	Energy and Matter	Level 4 M2 L1–L3
	Matter is made of particles.	Level 4 M2 L8–L26
	 Matter flows and cycles can be tracked in terms of the weight of the 	Level 4 M3 L1–L3
	substances before and after a process occurs. The total weight of the	Level 4 M3 L10-L19
	substances does not change. This is what is meant by conservation of	
	matter. Matter is transported into, out of, and within systems.	
	 Energy can be transferred in various ways and between objects. 	

Connections to Engineering, Technology, and Applications of Science	Aligned PhD Science Lessons
Interdependence of Science, Engineering, and Technology	Level 4 M1 L12–L17
Scientific discoveries about the natural world can often lead to new and	
improved technologies, which are developed through the engineering design	
process.	
Knowledge of relevant scientific concepts and research findings is important in	
engineering.	
Science and technology support each other.	
Influence of Engineering, Technology, and Science on Society and the Natural World	Level 4 M1 L12–L17
Engineers improve existing technologies or develop new ones.	Level 4 M1 L23–L24
Engineers improve existing technologies or develop new ones to increase their	Level 4 M2 L15–L23
benefits, decrease known risks, and meet societal demands.	
People's needs and wants change over time, as do their demands for new and	
improved technologies.	

South Dakota Science Standards Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 5

The Grade 5 South Dakota Science Standards are fully covered by the Level 5 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 5	Standards		Aligned PhD		
			Science Lessons		
Physical	Science				
Matter a	nd Its Interactions				
5-PS1-1	Develop a model to describe that matter is made of particles too small to		Level 5 M1 L5-L10		
	be seen.		Level 5 M1 L23-L26		
5-PS1-2	Measure and graph quantities to provide evidence that regardless of the		Level 5 M1 L9-L17		
	type of change that occurs when heating, cooling, or mixing substances,		Level 5 M1 L23-L26		
	the total weight of matter is conserved.				
5-PS1-3	Make observations and measurements to identify materials based on their		Level 5 M1 L1–L4		
	properties.		Level 5 M1 L11–L17		
			Level 5 M1 L23-L26		
5-PS1-4	Conduct an investigation to determine whether the mixing of two or more		Level 5 M1 L1–L2		
	substances results in new substances.		Level 5 M1 L13-L26		
Motion a	nd Stability: Forces and Interactions				
5-PS2-1	Support an argument that the gravitational force exerted by Earth on		Level 5 M4 L3-L4		
	objects is directed down.		Level 5 M4 L24-L26		
Energy					
5-PS3-1	Use models to describe that energy in animals' food (used for body repair,		Level 5 M2 L15-L19		
	growth, motion, and to maintain body warmth) was once energy from the		Level 5 M2 L24–L26		
	sun.				
Life Scier	nce				
From Mo	lecules to Organisms: Structures and Processes				
5-LS1-1	Support an argument that plants get the materials they need for growth		Level 5 M2 L3-L5		
	chiefly from air and water.		Level 5 M2 L20-L26		
Ecosyste	Ecosystems: Interactions, Energy, and Dynamics				
5-LS2-1	Develop a model to describe the movement of matter and energy among		Level 5 M2 L1–L2		
	producers, consumers, decomposers, and the environment.		Level 5 M2 L6–L14		
			Level 5 M2 L24–L26		

Earth and Spa	Earth and Space Science					
Earth's Place	Earth's Place in the Universe					
5-ESS1-1	Support an argument that differences in the apparent brightness of		Level 5 M4 L18-L19			
	the sun compared to other stars is due to distances from the Earth.		Level 5 M4 L24-L26			
5-ESS1-2	Represent data in graphical displays to reveal patterns of daily		Level 5 M4 L1-L2			
	changes in length and direction of shadows, day and night, and the		Level 5 M4 L5-L17			
	seasonal appearance of some stars in the night sky.		Level 5 M4 L20-L26			
Earth's Syster	ms					
5-ESS2-1	Develop a model to describe the interaction of geosphere, biosphere,		Level 5 M3 L1-L3			
	hydrosphere, and/or atmosphere.		Level 5 M3 L6-L13			
			Level 5 M3 L19-L27			
5-ESS2-2	Describe and graph the amounts and percentages of salt water and		Level 5 M3 L4-L5			
	fresh water in various reservoirs to provide evidence about the		Level 5 M3 L19-L27			
	distribution of water on Earth.					
Earth and Hu	man Activity					
5-ESS3-1	Obtain and combine information about ways individual communities		Level 5 M3 L14-L18			
	use science ideas to protect the Earth's resources and environment.		Level 5 M3 L24-L27			
Engineering D	Design					
3-5-ETS1-1	Define a simple design problem reflecting a need or a want that		Level 3 M1 L21-L26			
	includes specified criteria for success and constraints on materials,		Level 3 M4 L23-L27			
	time, or cost.		Level 4 M2 L17-L23			
3-5-ETS1-2	Generate and compare multiple possible solutions to a problem		Level 5 M3 L19-L23			
	based on how well each is likely to meet the criteria and constraints					
	of the problem.					
3-5-ETS1-3	Plan and carry out fair tests in which variables are controlled and		Level 5 M1 L18-L22			
	failure points are considered to identify aspects of a model or					
	prototype that can be improved.					

Scienc	e and Engineering Practices	Aligned PhD
		Science Lessons
2	 Developing and Using Models Identify limitations of models. Collaboratively develop and/or revise a model based on evidence that shows the relationships among variables for frequent and regular occurring events. Develop a model using an analogy, example, or abstract representation to describe a scientific principle or design solution. Develop and/or use models to describe and/or predict phenomena. Develop a diagram or simple physical prototype to convey a proposed object, tool, or process. Use a model to test cause and effect relationships or interactions concerning the functioning of a natural or designed system. 	Level 5 M1 L1–L2 Level 5 M1 L5–L10 Level 5 M1 L13–L14 Level 5 M1 L23–L26 Level 5 M2 L1–L2 Level 5 M2 L6–L7 Level 5 M2 L14 Level 5 M2 L20 Level 5 M3 L1–L3 Level 5 M3 L6–L16 Level 5 M3 L19–L27 Level 5 M4 L1–L4 Level 5 M4 L7–L18 Level 5 M4 L20–L26
3	Planning and Carrying Out Investigations	Level 5 M1 L13–L14 Level 5 M1 L18–L22 Level 5 M2 L3–L5

		I .
	Plan and conduct an investigation collaboratively to produce data to	Level 5 M3 L10–L11
	serve as the basis for evidence, using fair tests in which variables are	Level 5 M4 L5–L6
	controlled and the number of trials is considered.	Level 5 M4 L18-L19
	 Evaluate appropriate methods and/or tools for collecting data. 	
	Make observations and/or measurements to produce data to serve as	
	the basis for evidence for an explanation of a phenomenon or to test	
	a design solution.	
	 Make predictions about what would happen if a variable changes. 	
	 Test two different models of the same proposed object, tool, or 	
	process to determine which better meets criteria for success.	
4	Analyzing and Interpreting Data	Level 5 M1 L15–L17
	• Represent data in tables and/or various graphical displays (bar graphs,	Level 5 M2 L3–L5
	pictographs, and/or pie charts) to reveal patterns that indicate	Level 5 M2 L8-L13
	relationships.	Level 5 M2 L15–L17
	• Analyze and interpret data to make sense of phenomena, using logical	Level 5 M3 L4–L5
	reasoning, mathematics, and/or computation.	Level 5 M3 L14–L16
	Compare and contrast data collected by different groups in order to	Level 5 M4 L14–L15
	discuss similarities and differences in their findings.	
	Analyze data to refine a problem statement or the design of a	
	proposed object, tool, or process.	
	 Use data to evaluate and refine design solutions. 	
5	Using Mathematics and Computational Thinking	Level 5 M1 L3–L4
	Decide if qualitative or quantitative data are best to determine	Level 5 M1 L15–L22
	whether a proposed object or tool meets criteria for success.	Level 5 M3 L10-L11
	Organize simple data sets to reveal patterns that suggest	Level 5 M3 L24–L27
	relationships.	Level 5 M4 L5–L6
	 Describe, measure, estimate, and/or graph quantities (e.g., area, 	2010.020
	volume, weight, time) to address scientific and engineering questions	
	and problems.	
	 Create and/or use graphs and/or charts generated from simple 	
	algorithms to compare alternative solutions to an engineering	
	problem.	
7	Engaging in Argument from Evidence	Level 5 M1 L3–L4
	Compare and refine arguments based on an evaluation of the	Level 5 M2 L3–L5
	evidence presented.	Level 5 M2 L8–L11
	Distinguish among facts, reasoned judgment based on research	Level 5 M2 L21–L23
	findings, and speculation in an explanation.	Level 5 M3 L19–L23
	Respectfully provide and receive critiques from peers about a	Level 5 M4 L5–L6
	proposed procedure, explanation, or model by citing relevant	Level 5 M4 L13–L17
	evidence and posing specific questions.	Level 5 M4 L20–L21
	 Construct and/or support an argument with evidence, data, and/or a 	LCVC 3 V 4 L20 L21
	model.	
	 Use data to evaluate claims about cause and effect. 	
	 Make a claim about the merit of a solution to a problem by citing 	
	relevant evidence about how it meets the criteria and constraints of	
	the problem.	
8	Obtaining, Evaluating, and Communicating Information	Level 5 M2 L6–L7
0	Read and comprehend grade-appropriate complex texts and/or other	Level 5 M2 L10–L11
	reliable media to summarize and obtain scientific and technical ideas	Level 5 M2 L18–L20
	and describe how they are supported by evidence.	Level 5 M3 L9

Compare and/or combine across complex texts and/or other reliable	Level 5 M3 L14-L16
media to support the engagement in other scientific and/or	Level 5 M3 L19–L27
engineering practices.	Level 5 M4 L18–L19
 Combine information in written text with that contained in 	
corresponding tables, diagrams, and/or charts to support the	
engagement in other scientific and/or engineering practices.	
Obtain and combine information from books and/or other reliable	
media to explain phenomena or solutions to a design problem.	
Communicate scientific and/or technical information orally and/or in	
written formats, including various forms of media as well as tables,	
diagrams, and charts.	

Disciplinary Core Ideas		Aligned PhD Science Lessons		
PS1.A	Structure of Matter			
	Developing models that portray matter as particles too small to be seen,		Level 5 M1 L5-L17	
	yet can be identified macroscopically based on their properties. Collecting		Level 5 M1 L23-L26	
	evidence that matter is always conserved.			
PS1.B	Chemical Reactions			
	Providing quantitative evidence of the conservation of matter during both		Level 5 M1 L1-L2	
	physical and chemical changes. Conducting investigations to prove		Level 5 M1 L9-L26	
	whether changes observed during the mixing of substances are physical or			
	chemical.			
PS2.B	2.B Types of Interactions			
	Using scientific ideas to ask questions and conduct investigations about		Level 5 M4 L3–L4	
	cause and effect relationships pertaining to gravitational, electric, and		Level 5 M4 L24-L26	
	magnetic interactions.			
PS3.D	Energy in Chemical Processes and Everyday Life			
	Designing a device capable of converting energy from one form to		Level 5 M2 L6-L7	
	another. Use models to describe energy conversion from sunlight to		Level 5 M2 L15-L19	
	various functions in living species.		Level 5 M2 L24–L26	
LS1.C	Organization for Matter and Energy Flow in Organisms			
	Using evidence to describe how plants get the materials they need to		Level 5 M2 L3-L5	
	survive from air and water. Developing a model to show how matter and		Level 5 M2 L8-L9	
	energy can be transferred through different participants within an		Level 5 M2 L15-L19	
	ecosystem.		Level 5 M2 L24–L26	
LS2.A	Interdependent Relationships in Ecosystems			
	Making arguments about how some animals form groups to help members		Level 5 M2 L1–L2	
	survive.		Level 5 M2 L8-L14	
			Level 5 M2 L20	
			Level 5 M2 L24–L26	
LS2.B	Cycles of Matter and Energy Transfer in Ecosystems			
	Developing a model to show how matter and energy can be transferred		Level 5 M2 L6-L7	
	through different participants within an ecosystem.		Level 5 M2 L10-L14	
			Level 5 M2 L24-L26	
ESS1.A	The Universe and Its Stars			
	Supporting the argument that distance from the Earth plays a role in the		Level 5 M4 L18-L19	
	brightness of the sun and other stars.		Level 5 M4 L24-L26	

ESS1.B	Earth and the Solar System	
	Using graphical data to reveal changing patterns in the length of shadows,	Level 5 M4 L1-L2
	day and night, and the appearance of the night sky over time.	Level 5 M4 L5-L18
		Level 5 M4 L20–L26
ESS2.A	Earth Materials and Systems	
	Making observations and collecting data as evidence of weathering or	Level 5 M3 L1-L13
	erosion. Describing the interaction of the geosphere, biosphere,	Level 5 M3 L24–L27
	hydrosphere, and/or atmosphere.	
ESS2.C	The Roles of Water in Earth's Surface Processes	
	Using data to describe water distribution on the Earth's surface, as well as	Level 5 M3 L4-L5
	its role in erosion and weathering.	Level 5 M3 L24–L27
ESS3.C	Human Impacts on Earth Systems	
	Generating and comparing multiple solutions to minimize the impact of	Level 5 M3 L14-L27
	the Earth's natural processes on humans. Combining information about	
	how communities use science to protect the Earth's resources and	
	environment.	

Crosscutting Concepts		Aligned PhD
		Science Lessons
1	Patterns	Level 5 M1 L7–L8
	Similarities and differences in patterns can be used to sort, classify,	Level 5 M2 L1–L5
	communicate, and analyze simple rates of change for natural phenomena	Level 5 M2 L8-L9
	and designed products.	Level 5 M2 L15–L17
	Patterns of change can be used to make predictions.	Level 5 M3 L6-L9
	Patterns can be used as evidence to support an explanation.	Level 5 M4 L1-L17
		Level 5 M4 L20–L26
2	Cause and Effect	Level 5 M1 L1–L2
	Cause and effect relationships are routinely identified, tested, and used to	Level 5 M1 L5–L6
	explain change.	Level 5 M1 L9-L10
	Events that occur together with regularity might or might not be a cause and	Level 5 M1 L18–L22
	effect relationship.	Level 5 M2 L3–L7
		Level 5 M2 L12–L13
		Level 5 M2 L18–L23
		Level 5 M3 L6–L8
		Level 5 M3 L12–L18
		Level 5 M4 L5–L6
		Level 5 M4 L24–L26
3	Scale, Proportion, and Quantity	Level 5 M1 L3–L4
	Natural objects and/or observable phenomena exist from the very small to	Level 5 M1 L13–L17
	the immensely large or from very short to very long time periods.	Level 5 M1 L23–L26
	Standard units are used to measure and describe physical quantities such as	Level 5 M2 L10–L11
	weight, time, temperature, and volume.	Level 5 M3 L1–L5
		Level 5 M3 L10–L11
		Level 5 M3 L24–L27
		Level 5 M4 L18–L19
		Level 5 M4 L24–L26
4	Systems and System Models	Level 5 M1 L3-L4

	A system is a group of related parts that make up a whole and can carry out	Level 5 M1 L15–L17
	functions its individual parts cannot.	Level 5 M2 L1-L2
	• A system can be described in terms of its components and their interactions.	Level 5 M2 L6-L11
		Level 5 M2 L14
		Level 5 M2 L18–L19
		Level 5 M2 L24–L26
		Level 5 M3 L1-L9
		Level 5 M3 L12–L13
		Level 5 M3 L19–L27
		Level 5 M4 L1–L2
		Level 5 M4 L7–L23
5	Energy and Matter	Level 5 M1 L5–L8
	Matter is made of particles.	Level 5 M1 L13–L14
	Matter flows and cycles can be tracked in terms of the weight of the	Level 5 M1 L23–L26
	substances before and after a process occurs. The total weight of the	Level 5 M2 L6–L11
	substances does not change. This is what is meant by conservation of	Level 5 M2 L14–L19
	matter. Matter is transported into, out of, and within systems.	Level 5 M2 L24–L26
	Energy can be transferred in various ways and between objects.	Level 5 M3 L10–L11
		Level 5 M4 L3–L4

Connections to Engineering, Technology, and Applications of Science		Aligned PhD
		Science Lessons
 Influence of Engineering, Technology, and Science on Society and the Natural World Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. People's needs and wants change over time, as do their demands for new and improved technologies. When new technologies become available, they can bring about changes in the way people live and interact with one another. 		Level 5 M3 L19–L23
 Interdependence of Science, Engineering, and Technology Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. Knowledge of relevant scientific concepts and research findings is important in engineering. Science and technology support each other. 		Level 5 M4 L7–L8