

Next Generation Content Standards and Objectives for Science in West Virginia Schools Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 3

The Grade 3 Next Generation Content Standards and Objectives for Science in West Virginia Schools are fully covered by the Level 3 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 3 Stan	ndards and Objectives	Aligned PhD
		Science Lessons
Physical Scie	nce—Motion and Stability, Forces and Interactions	
Forces and In	teractions	
S.3.GS.1	Plan and conduct an investigation to provide evidence of the	Level 3 M4 L10–L18
	effects of balanced and unbalanced forces on the motion of an object.	Level 3 M4 L28–L30
S.3.GS.2	Make observations and/or measurements of an object's motion to	Level 3 M4 L1-L9
	provide evidence that a pattern can be used to predict future motion.	Level 3 M4 L28–L30
S.3.GS.3	Ask questions to determine cause and effect relationships of	Level 3 M4 L19-L21
	electric or magnetic interactions between two objects not in contact with each other.	Level 3 M4 L28–L30
S.3.GS.4	Define a simple design problem that can be solved by applying	Level 3 M4 L22-L30
	scientific ideas about magnets.	
Life Science-	Ecosystems: Interactions, Energy, and Dynamics and	
Biological Ev	olution: Unity and Diversity	
Interdepende	ent Relationships in Ecosystems	
S.3.GS.5	Construct an argument that some animals form groups that help	Level 3 M2 L13–L15
	members survive.	Level 3 M2 L26–L28
S.3.GS.6	Analyze and interpret data from fossils to provide evidence of the	Level 3 M2 L1–L8
	organisms and the environments in which they lived long ago.	Level 3 M2 L26–L28
S.3.GS.7	Construct an argument with evidence that in a particular habitat	Level 3 M3 L21–L28
	some organisms can survive well, some survive less well, and some cannot survive at all.	
S.3.GS.8	Make a claim about the merit of a solution to a problem caused	Level 3 M2 L1–L2
	when the environment changes and the types of plants and	Level 3 M2 L9–L12
	animals that live there may change.	Level 3 M2 L16–L19

		Level 3 M2 L22–L28
Life Science—Fr	om Molecules to Organisms: Structures and Processes and	
	itance and Variation of Traits across Generations	
•	Variation of Traits: Life Cycles and Traits	
S.3.GS.9	Develop models to describe that organisms have unique and	Level 3 M3 L7-L8
	diverse life cycles but all have in common birth, growth,	Level 3 M3 L23-L28
	reproduction, and death.	
S.3.GS.10	Analyze and interpret data to provide evidence that plants and	Level 3 M3 L1–L6
	animals have traits inherited from parents and that variation of	Level 3 M3 L14-L18
	these traits exists in a group of similar organisms.	Level 3 M3 L26-L28
S.3.GS.11	Use evidence to support the explanation that traits can be	Level 3 M3 L9-L13
	influenced by the environment.	Level 3 M3 L19-L20
		Level 3 M3 L26-L28
S.3.GS.12	Use evidence to construct an explanation for how the variations in	Level 3 M3 L21–L28
	characteristics among individuals of the same species may provide	
	advantages in surviving, finding mates, and reproducing.	
Earth and Space	e Science—Earth's Systems and	
Earth and Huma	an Activity	
Weather and Cli	mate	
S.3.GS.13	Represent data in tables and graphical displays to describe typical	Level 3 M1 L1-L15
	weather conditions expected during a particular season.	Level 3 M1 L19-L20
		Level 3 M1 L27-L29
S.3.GS.14	Obtain and combine information to describe climates in different	Level 3 M1 L11-L15
	regions of the world.	Level 3 M1 L27-L29
S.3.GS.15	Make a claim about the merit of a design solution that reduces the	Level 3 M1 L1-L3
	impacts of a weather-related hazard.	Level 3 M1 L16-L29
Engineering, Te	chnology, and Applications of Science	
Engineering Des	ign	
S.3-5.ETS.1	Define a simple design problem reflecting a need or a want that	Level 3 M1 L21-L26
	includes specified criteria for success and constraints on materials,	
	time, or cost.	
S.3-5.ETS.2	Generate and compare multiple possible solutions to a problem	Level 3 M2 L22-L25
	based on how well each is likely to meet the criteria and	
	constraints of the problem.	
S.3-5.ETS.3	Plan and carry out fair tests in which variables are controlled and	Level 3 M4 L23-L27
	failure points are considered to identify aspects of a model or	
	prototype that can be improved.	

Next Generation Content Standards and Objectives for Science in West Virginia Schools Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 4

The Grade 4 Next Generation Content Standards and Objectives for Science in West Virginia Schools are fully covered by the Level 4 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 4 Star	ndards and Objectives		Aligned PhD
			Science Lessons
Physical Scie	ence—Energy		
Energy			
S.4.GS.1	Use evidence to construct an explanation relating the speed of an		Level 4 M2 L6–L7
	object to the energy of that object.		Level 4 M2 L24–L26
S.4.GS.2	Make observations to provide evidence that energy can be		Level 4 M2 L1–L5
	transferred from place to place by sound, light, heat, and electric		Level 4 M2 L10–L11
	currents.		Level 4 M2 L24–L26
S.4.GS.3	Ask questions and predict outcomes about the changes in energy		Level 4 M2 L8-L9
	that occur when objects collide.		Level 4 M2 L24-L26
S.4.GS.4	Apply scientific ideas to design, test, and refine a device that		Level 4 M2 L12-L26
	converts energy from one form to another.		
S.4.GS.5	Obtain and combine information to describe that energy and fuels		Level 4 M1 L21–L27
	are derived from natural resources and their uses affect the		
	environment.		
Physical Scie	ence—Waves and Their Applications in Technologies for Information	Trai	nsfer
Waves: Wave	es and Information		
S.4.GS.6	Develop a model of waves to describe patterns in terms of		Level 4 M3 L7-L14
	amplitude and wavelength and that waves can cause objects to		Level 4 M3 L29-L31
	move.		
S.4.GS.7	Generate and compare multiple solutions that use patterns to		Level 4 M4 L18–L27
	transfer information.		
Life Science—From Molecules to Organisms: Structures and Processes			
Structure, Function, and Information Processing			
S.4.GS.8	Develop a model to describe that light reflecting from objects and		Level 4 M4 L1–L17
	entering the eye allows objects to be seen.		Level 4 M4 L25–L27

			T
S.4.GS.9	Construct an argument that plants and animals have internal and		Level 4 M3 L1–L6
	external structures that function to support survival, growth,		Level 4 M3 L20
	behavior, and reproduction.		Level 4 M3 L26-L31
S.4.GS.10	Use a model to describe that animals receive different types of		Level 4 M3 L1–L6
	information through their senses, process the information in their		Level 4 M3 L15–L25
	brain, and respond to the information in different ways.		Level 4 M3 L29–L31
Earth's Place in	the Universe and		
Earth's Systems	5		
Earth's Systems	: Processes that Shape the Earth		
S.4.GS.11	Identify evidence from patterns in rock formations and fossils in		Level 4 M1 L1–L5
	rock layers to support an explanation for changes in a landscape		Level 4 M1 L19–L20
	over time.		Level 4 M1 L25–L27
S.4.GS.12	Make observations and/or measurements to provide evidence of		Level 4 M1 L6-L11
	the effects of weathering or the rate of erosion by water, ice, wind,		Level 4 M1 L25-L27
	or vegetation.		
S.4.GS.13	Analyze and interpret data from maps to describe patterns of		Level 4 M1 L18-L20
	Earth's features.		Level 4 M1 L25-L27
S.4.GS.14	Generate and compare multiple solutions to reduce the impacts of		Level 4 M1 L12-L17
	natural Earth processes on humans.		Level 4 M1 L25-L27
Engineering, Technology, and Applications of Science			
Engineering Des	ign		
S.3-5.ETS.1	Define a simple design problem reflecting a need or a want that		Level 4 M2 L17-L23
	includes specified criteria for success and constraints on materials,		
	time, or cost.		
S.3-5.ETS.2	Generate and compare multiple possible solutions to a problem		Level 4 M1 L12-L17
	based on how well each is likely to meet the criteria and constraints		Level 4 M4 L14–L17
	of the problem.		
S.3-5.ETS.3	Plan and carry out fair tests in which variables are controlled and		Level 4 M4 L14-L17
	failure points are considered to identify aspects of a model or		
	prototype that can be improved.		

Next Generation Content Standards and Objectives for Science in West Virginia Schools Correlation to *PhD Science*™

Green indicates that <i>PhD Science</i> ™ fully addresses the standard within the grade level.
Blue indicates that <i>PhD Science</i> covers the standard but in a different grade level.
Yellow indicates that <i>PhD Science</i> partially covers the standard within the grade level.
Red indicates that <i>PhD Science</i> does not cover the standard.

Key: Module (M), Lesson (L)

PhD Science Level 5

The Grade 5 Next Generation Content Standards and Objectives for Science in West Virginia Schools are fully covered by the Level 5 *PhD Science* curriculum. A detailed analysis of alignment appears in the table below.

Grade 5 Standards and Objectives			Aligned PhD	
			Science Lessons	
Physical Science	e—Matter and Its Interactions			
Structure and Pi	roperties of Matter			
S.5.GS.1	Develop a model to describe that matter is made of particles too		Level 5 M1 L5-L10	
	small to be seen.		Level 5 M1 L23-L26	
S.5.GS.2	Measure and graph quantities to provide evidence that regardless		Level 5 M1 L9-L17	
	of the type of change that occurs when heating, cooling, or mixing		Level 5 M1 L23–L26	
	substances, the total weight of matter is conserved.			
S.5.GS.3	Make observations and measurements to identify materials based		Level 5 M1 L1–L4	
	on their properties.		Level 5 M1 L11–L17	
			Level 5 M1 L23–L26	
S.5.GS.4	Conduct an investigation to determine whether the mixing of two		Level 5 M1 L1–L2	
	or more substances results in new substances.		Level 5 M1 L13–L26	
Physical Science	e—Energy			
Matter and Ene	rgy in Organisms and Ecosystems			
S.5.GS.5	Use models to describe that energy in animals' food (used for body		Level 5 M2 L15-L19	
	repair, growth, motion, and to maintain body warmth) was once		Level 5 M2 L24–L26	
	energy from the sun.			
S.5.GS.6	Support an argument that plants get the materials they need for		Level 5 M2 L3–L5	
	growth chiefly from air and water.		Level 5 M2 L24–L26	
S.5.GS.7	Develop a model to describe the movement of matter among		Level 5 M2 L1–L2	
	plants, animals, decomposers, and the environment.		Level 5 M2 L6–L14	
			Level 5 M2 L20	
			Level 5 M2 L24–L26	
Earth and Space	Earth and Space Science—Earth and Human Activity			
Earth's Systems				
S.5.GS.8	Develop a model using an example to describe ways the geosphere,		Level 5 M3 L1–L3	
	biosphere, hydrosphere, and/or atmosphere interact.		Level 5 M3 L6-L13	

			Level 5 M3 L19–L27		
S.5.GS.9	Describe and graph the amounts and percentages of salt water and		Level 5 M3 L4–L5		
3.3.03.3	fresh water in various reservoirs to provide evidence about the		Level 5 M3 L19–L27		
	distribution of water on Earth.		Level 3 IVI3 L19—L27		
S.5.GS.10	Obtain and combine information about ways individual		Level 5 M3 L14–L18		
3.3.03.10	communities use science ideas to protect the Earth's resources and		Level 5 M3 L24–L16		
	environment.		Level 5 IVI3 L24—L27		
Earth and Spa	ce Science—Earth's Place in the Universe				
•	: Stars and the Solar System				
S.5.GS.11	Support an argument that the gravitational force exerted by Earth		Level 5 M4 L3–L4		
	on objects is directed down.		Level 5 M4 L24-L26		
S.5.GS.12	Support an argument that differences in the apparent brightness of		Level 5 M4 L18-L19		
	the sun compared to other stars is due to their relative distances		Level 5 M4 L24-L26		
	from Earth.				
S.5.GS.13	Represent data in graphical displays to reveal patterns of daily		Level 5 M4 L1–L2		
	changes in length and direction of shadows, day and night, and the		Level 5 M4 L5-L17		
	seasonal appearance of some stars in the night sky.		Level 5 M4 L20-L26		
Engineering, 1	Engineering, Technology, and Applications of Science				
Engineering De	esign				
S.3-5.ETS.1	Define a simple design problem reflecting a need or a want that		Level 5 M2 L21–L23		
	includes specified criteria for success and constraints on materials,				
	time, or cost.				
S.3-5.ETS.2	Generate and compare multiple possible solutions to a problem		Level 5 M3 L19-L23		
	based on how well each is likely to meet the criteria and constraints				
	of the problem.				
S.3-5.ETS.3	Plan and carry out fair tests in which variables are controlled and		Level 5 M1 L18–L22		
	failure points are considered to identify aspects of a model or				
	prototype that can be improved.				