Grade 5 | Michigan Mathematics Standards Correlation to Eureka Math ${ }^{\text {2® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Operations and Algebraic Thinking

5.OA.A Write and interpret numerical expressions.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.OA.A. 1

Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.

	5 M 3 Lesson 18: Compare and evaluate expressions with parentheses. 5 M 3 Lesson 22: Evaluate expressions involving nested grouping symbols. 5 M 4 Lesson 29: Interpret, evaluate, and compare numerical expressions involving decimals. 5M4 Lesson 30: Create and solve real-world problems for given numerical expressions involving decimals.
W.OA.A.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them.	5 M 1 Topic D: Multi-Step Problems with Whole Numbers 5 M 3 Lesson 12: Divide a nonzero whole number by a unit fraction to find the number of groups. 5 M 3 Lesson 16: Reason about the size of quotients of whole numbers and unit fractions and quotients of unit fractions and whole numbers. 5 M 3 Lesson 18: Compare and evaluate expressions with parentheses. 5 M 4 Lesson 29: Interpret, evaluate, and compare numerical expressions involving decimals. 5 M 4 Lesson 30: Create and solve real-world problems for given numerical expressions involving decimals.

Operations and Algebraic Thinking

5.OA.B Analyze patterns and relationships.

Michigan Mathematics Standards

5.OA.B. 3

Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane.

Aligned Components of Eureka Math ${ }^{2}$

5 M6 Lesson 7: Generate number patterns to form ordered pairs.
5 M6 Lesson 8: Identify addition and subtraction relationships between corresponding terms in number patterns.

5 M6 Lesson 9: Identify multiplication and division relationships between corresponding terms in number patterns.

5 M6 Lesson 11: Draw lines in the coordinate plane and identify points on the lines.
5 M6 Lesson 20: Reason about patterns in real-world situations.

Number and Operations in Base Ten

5.NBT.A Understand the place value system.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.NBT.A. 1

Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $\frac{1}{10}$ of what it represents in the place to its left.

5 M1 Lesson 1: Relate adjacent place value units by using place value understanding.
5 M1 Lesson 2: Multiply and divide by 10, 100, and 1,000 and identify patterns in the products and quotients.

5 M4 Lesson 1: Model and relate decimal place value units to thousandths.
5 M4 Lesson 2: Represent thousandths as a place value unit.
5 M4 Lesson 3: Represent decimal numbers to the thousandths place in different forms.
5 M4 Lesson 4: Relate the values of digits in a decimal number by using place value understanding.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

5.NBT.A. 2

Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10 .

5 M1 Lesson 2: Multiply and divide by 10, 100, and 1,000 and identify patterns in the products and quotients.
5 M1 Lesson 3: Use exponents to multiply and divide by powers of 10.
5 M1 Lesson 4: Estimate products and quotients by using powers of 10 and their multiples.
5 M4 Lesson 5: Multiply and divide decimal numbers by powers of 10.

This standard is fully addressed by the lessons aligned to its subsections.

5 M4 Lesson 1: Model and relate decimal place value units to thousandths.
5 M4 Lesson 2: Represent thousandths as a place value unit.
5 M4 Lesson 3: Represent decimal numbers to the thousandths place in different forms.

5 M4 Lesson 6: Compare decimal numbers to the thousandths place.

5M4 Lesson 7: Round decimal numbers to the nearest one, tenth, or hundredth.
5 M4 Lesson 8: Round decimal numbers to any place value unit.
5 M4 Lesson 8: Round decimal numbers to any place value unit.

Use place value understanding to round decimals to any place.

Number and Operations in Base Ten

5.NBT.B Perform operations with multi-digit whole numbers and with decimals to hundredths.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.NBT.B. 5

Fluently multiply multi-digit whole numbers using the standard algorithm.

5.NBT.B. 6

Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

5.NBT.B. 7

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

5 M1 Topic B: Multiplication of Whole Numbers

5 M1 Topic C: Division of Whole Numbers

5 M4 Topic B: Addition and Subtraction of Decimal Numbers

5 M4 Topic C: Multiplication of Decimal Numbers
5 M4 Topic D: Division of Decimal Numbers

Number and Operations-Fractions

5.NF.A Use equivalent fractions as a strategy to add and subtract fractions.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.NF.A. 1

Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators.

5.NF.A. 2

Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers.

5 M2 Topic B: Addition and Subtraction of Fractions by Making Like Units
5 M2 Topic C: Addition and Subtraction of Fractions, Whole Numbers, and Mixed Numbers

5 M2 Topic C: Addition and Subtraction of Fractions, Whole Numbers, and Mixed Numbers
5 M2 Lesson 17: Solve problems by equally redistributing a total amount.

Number and Operations-Fractions

5.NF.B Apply and extend previous understandings of multiplication and division to multiply and divide fractions.

Michigan Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

5.NF.B. 3

Interpret a fraction as division of the numerator by the denominator $\left(\frac{a}{b}=a \div b\right)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.B. 4
 Apply and extend previous understandings of multiplication to multiply a fraction or

 whole number by a fraction.
5.NF.B.4.a

Interpret the product $\frac{a}{b} \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$.

5 M2 Topic A: Fractions and Division

This standard is fully addressed by the lessons aligned to its subsections.

5 M3 Topic A: Multiplication of a Whole Number by a Fraction
5 M3 Lesson 7: Multiply fractions less than 1 by unit fractions pictorially.
5 M3 Lesson 8: Multiply fractions less than 1 pictorially.
5 M3 Lesson 11: Multiply fractions.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.NF.B.4.b

Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.

5 M5 Lesson 8: Find areas of square tiles with fraction side lengths by relating the tile to a unit square.
5 M5 Lesson 9: Organize, count, and represent a collection of square tiles.
5 M5 Lesson 10: Find the area of a rectangle with fraction side lengths by relating the rectangle to a unit square.

5 M5 Lesson 11: Find areas of rectangles with fraction side lengths by using multiplication.
5 M5 Lesson 12: Multiply mixed numbers.
5 M5 Lesson 13: Solve mathematical problems involving areas of composite figures with mixed-number side lengths.

5 M5 Lesson 14: Solve real-world problems involving areas of composite figures with mixed-number side lengths.

5 M6 Lesson 15: Use the coordinate plane to reason about perimeters and areas of rectangles.
This standard is fully addressed by the lessons aligned to its subsections.

5 M3 Lesson 3: Multiply a whole number by a fraction less than 1.
5 M3 Lesson 4: Multiply a whole number by a fraction.
5 M3 Topic B: Multiplication of Fractions

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.NF.B.5.b

Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $\frac{a}{b}=\frac{n \times a}{n \times b}$ to the effect of multiplying $\frac{a}{b}$ by 1 .

5.NF.B. 6

Solve real-world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.

5.NF.B. 7

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

5 M3 Lesson 1: Find fractions of a set with arrays.
5 M3 Lesson 2: Interpret fractions as division to find fractions of a set with tape diagrams and number lines.

5 M3 Lesson 4: Multiply a whole number by a fraction.
5 M3 Lesson 5: Convert larger customary measurement units to smaller measurement units.
5 M3 Lesson 6: Convert smaller customary measurement units to larger measurement units.
5 M3 Topic B: Multiplication of Fractions

5 M3 Lesson 17: Solve word problems involving fractions with multiplication and division.
5 M3 Lesson 21: Solve multi-step word problems involving fractions.
5 M5 Lesson 14: Solve real-world problems involving areas of composite figures with mixed-number side lengths.

5 M5 Lesson 15: Solve multi-step word problems involving multiplication of mixed numbers.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

5.NF.B.7.a

Interpret division of a unit fraction by a non-zero whole number, and compute such quotients.

5 M3 Lesson 14: Divide a unit fraction by a nonzero whole number.
5 M3 Lesson 15: Divide by whole numbers and unit fractions.
5 M3 Lesson 16: Reason about the size of quotients of whole numbers and unit fractions and quotients of unit fractions and whole numbers.

5 M3 Lesson 19: Create and solve one-step word problems involving fractions.
5 M3 Lesson 12: Divide a nonzero whole number by a unit fraction to find the number of groups.
5 M3 Lesson 13: Divide a nonzero whole number by a unit fraction to find the size of the group.
5 M3 Lesson 15: Divide by whole numbers and unit fractions.
5 M3 Lesson 16: Reason about the size of quotients of whole numbers and unit fractions and quotients of unit fractions and whole numbers.
5 M3 Lesson 19: Create and solve one-step word problems involving fractions.

5 M3 Lesson 12: Divide a nonzero whole number by a unit fraction to find the number of groups.
5 M3 Lesson 13: Divide a nonzero whole number by a unit fraction to find the size of the group.
5 M3 Lesson 14: Divide a unit fraction by a nonzero whole number.
5 M3 Lesson 15: Divide by whole numbers and unit fractions.
5 M3 Lesson 17: Solve word problems involving fractions with multiplication and division.
5 M3 Lesson 19: Create and solve one-step word problems involving fractions.
5 M3 Lesson 20: Solve multi-step word problems involving fractions and write equations with parentheses.

5 M3 Lesson 21: Solve multi-step word problems involving fractions.

Measurement and Data

5.MD.A Convert like measurement units within a given measurement system.

Michigan Mathematics Standards

5.MD.A. 1

Convert among different-sized standard measurement units within a given measurement system (e.g., convert
5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems.

Measurement and Data

5.MD.B Represent and interpret data.

Michigan Mathematics Standards

5.MD.B. 2

Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Use operations on fractions for this grade to solve problems involving information presented in line plots.

Aligned Components of Eureka Math ${ }^{2}$

Measurement and Data

5.MD.C Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

5.MD.C. 3

Recognize volume as an attribute of solid figures and understand concepts of volume measurement.

5.MD.C.3.a

A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.
5.MD.C.3.b
A solid figure which can be packed without
gaps or overlaps using n unit cubes is said to have a volume of n cubic units.

5.MD.C. 4

Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.

This standard is fully addressed by the lessons aligned to its subsections.

5 M5 Lesson 16: Identify attributes and properties of right rectangular prisms.
5 M5 Lesson 17: Find the volume of right rectangular prisms by packing with unit cubes and counting.
5 M5 Lesson 19: Compose and decompose right rectangular prisms to find their volume by using layers.
5 M5 Lesson 20: Interpret volume as filling.
5 M5 Lesson 21: Relate volumes of solids and liquid volume.

5 M5 Lesson 16: Identify attributes and properties of right rectangular prisms.
5 M5 Lesson 17: Find the volume of right rectangular prisms by packing with unit cubes and counting.
5 M5 Lesson 19: Compose and decompose right rectangular prisms to find their volume
by using layers.
5 M5 Lesson 20: Interpret volume as filling.
5 M5 Lesson 21: Relate volumes of solids and liquid volume.

5 M5 Lesson 17: Find the volume of right rectangular prisms by packing with unit cubes and counting.
5 M5 Lesson 18: Find the volume of right rectangular prisms by packing with improvised units.
5 M5 Lesson 19: Compose and decompose right rectangular prisms to find their volume
by using layers.
5 M5 Lesson 21: Relate volumes of solids and liquid volume.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

5.MD.C. 5

Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume.

5.MD.C.5.a

Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.

5.MD.C.5.b

Apply the formulas $V=l \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems.

This standard is fully addressed by the lessons aligned to its subsections.

5 M5 Lesson 22: Find the volumes of right rectangular prisms by using the area of the base.
5 M5 Lesson 23: Find the volumes of right rectangular prisms by multiplying the edge lengths.

5 M5 Lesson 22: Find the volumes of right rectangular prisms by using the area of the base.
5 M5 Lesson 23: Find the volumes of right rectangular prisms by multiplying the edge lengths.
5 M5 Lesson 25: Find the volumes of solid figures composed of right rectangular prisms.
5 M5 Lesson 26: Solve word problems involving perimeter, area, and volume.
5 M5 Lesson 27: Apply concepts and formulas of volume to design a sculpture by using right rectangular prisms, part 1.

5 M5 Lesson 28: Apply concepts and formulas of volume to design a sculpture by using right rectangular prisms, part 2.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

5.MD.C.5.c

Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems.

5 M5 Lesson 24: Solve word problems involving volumes of right rectangular prisms.
5 M5 Lesson 25: Find the volumes of solid figures composed of right rectangular prisms.
5 M5 Lesson 26: Solve word problems involving perimeter, area, and volume.
5 M5 Lesson 27: Apply concepts and formulas of volume to design a sculpture by using right rectangular prisms, part 1.
5 M5 Lesson 28: Apply concepts and formulas of volume to design a sculpture by using right rectangular prisms, part 2.

Geometry

5.G.A Graph points on the coordinate plane to solve real-world and mathematical problems.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

5.G.A. 1

Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).

5 M6 Lesson 1: Construct a coordinate system on a line.
5 M6 Lesson 2: Construct a coordinate system in a plane.
5 M6 Lesson 3: Identify and plot points by using ordered pairs.

Michigan Mathematics Standards

5.G.A. 2

Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Aligned Components of Eureka Math ${ }^{2}$

5 M6 Lesson 4: Describe the distance and direction between points in the coordinate plane.
5 M6 Lesson 5: Identify properties of horizontal and vertical lines.
5 M6 Lesson 6: Use properties of horizontal and vertical lines to solve problems.
5 M6 Lesson 7: Generate number patterns to form ordered pairs.
5 M6 Lesson 8: Identify addition and subtraction relationships between corresponding terms in number patterns.

5 M6 Lesson 9: Identify multiplication and division relationships between corresponding terms in number patterns.

5 M6 Topic C: Solve Mathematical Problems in the Coordinate Plane
5 M6 Lesson 16: Interpret graphs that represent real-world situations.
5 M6 Lesson 17: Plot data in the coordinate plane and analyze relationships.
5 M6 Lesson 18: Interpret line graphs.
5 M6 Lesson 20: Reason about patterns in real-world situations.

Geometry

5.G.B Classify two-dimensional figures into categories based on their properties.

Michigan Mathematics Standards

5.G.B. 3

Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.

5.G.B. 4

Classify two-dimensional figures in a hierarchy based on properties.

Aligned Components of Eureka Math ${ }^{2}$
5 M5 Topic A: Drawing, Analysis, and Classification of Two-Dimensional Figures

5 M5 Topic A: Drawing, Analysis, and Classification of Two-Dimensional Figures
5 M6 Lesson 12: Graph and classify quadrilaterals in the coordinate plane.

