Grade 7 | Minnesota K-12 Academic Standards in Mathematics Correlation to Eureka Math ${ }^{\text {®® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Number \& Operation

Read, write, represent and compare positive and negative rational numbers, expressed as integers, fractions and decimals.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.1.1.1

Know that every rational number can be written as the ratio of two integers or as a terminating or repeating decimal. Recognize that π is not rational, but that it can be approximated by rational numbers such as $\frac{22}{7}$ and 3.14.

7.1.1.2

Understand that division of two integers will always result in a rational number. Use this information to interpret the decimal result of a division problem when using a calculator.

7.1.1.3

Locate positive and negative rational numbers on the number line, understand the concept of opposites, and plot pairs of positive and negative rational numbers on a coordinate grid.

7.1.1.4

Compare positive and negative rational numbers expressed in various forms using the symbols $<,>,=, \leq, \geq$.

7 M2 Lesson 18: Understanding Negative Divisors
8 M1 Lesson 22: Familiar and Not So Familiar Numbers
Supplemental material is necessary to address approximating π as $\frac{22}{7}$ and as 3.14.

7 M2 Lesson 18: Understanding Negative Divisors

6 M3 Topic A: Integers and Rational Numbers
6 M3 Topic C: The Coordinate Plane

6 M3 Lesson 5: Comparing Rational Numbers
Supplemental material is needed to address using the symbols \leq and \geq.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.1.1.5

Recognize and generate equivalent representations of positive and negative rational numbers, including equivalent fractions.

```
7 M2 Lesson 19: Rational Numbers as Decimals, Part 1
7 M2 Lesson 20: Rational Numbers as Decimals, Part }
8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2
```


Number \& Operation

Calculate with positive and negative rational numbers, and rational numbers with whole-number exponents, to solve real-world and mathematical problems.

Minnesota K-12 Academic
Standards in Mathematics
\section*{Aligned Components of Eureka Math²}

7.1.2.1

Add, subtract, multiply and divide positive and negative rational numbers that are integers, fractions and terminating decimals; use efficient and generalizable procedures, including standard algorithms; raise positive rational numbers to whole-number exponents.

```
7M2 Lesson 4: KAKOOMA®
7 M2 Lesson 5: Decomposing Rational Numbers to Make Addition More Efficient
7M2 Lesson 6: Adding Rational Numbers
7 M2 Lesson 9: Subtracting Integers, Part 2
7 M2 Lesson 10: Subtracting Rational Numbers, Part }
7 M2 Lesson 11: Subtracting Rational Numbers, Part 2
7 M2 Lesson 12: The Integer Game
7 M2 Topic C: Multiplying Rational Numbers
7 M2 Lesson 17: Understanding Negative Dividends
7M2 Lesson 18: Understanding Negative Divisors
7M2 Lesson 22: Multiplication and Division Expressions
7 M2 Lesson 24: Order of Operations with Rational Numbers
```


Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.1.2.2

Use real-world contexts and the inverse relationship between addition and subtraction to explain why the procedures of arithmetic with negative rational numbers make sense.

7.1.2.3

Understand that calculators and other computing technologies often truncate or round numbers.

7.1.2.4

Solve problems in various contexts involving calculations with positive and negative rational numbers and positive integer exponents, including computing simple and compound interest.
7 M2 Lesson 4: KAKOOMA ${ }^{\circledR}$
7 M2 Lesson 5: Decomposing Rational Numbers to Make Addition More Efficient
7 M2 Lesson 6: Adding Rational Numbers
7 M2 Lesson 9: Subtracting Integers, Part 2
7 M2 Lesson 10: Subtracting Rational Numbers, Part 1
7 M2 Lesson 11: Subtracting Rational Numbers, Part 2
7 M2 Lesson 12: The Integer Game
7 M2 Lesson 20: Rational Numbers as Decimals, Part 2
7 M2 Lesson 25: Writing and Evaluating Expressions with Rational Numbers, Part 1
7 M2 Lesson 26: Writing and Evaluating Expressions with Rational Numbers, Part 2
7 M3 Lesson 9: Solving Equations to Determine Unknown Angle Measures
7 M3 Lesson 10: Problem Solving with Unknown Angle Measures
7 M3 Lesson 11: Dominoes and Dominoes
7 M3 Lesson 16: Using Equations to Solve Rate Problems
7 M3 Lesson 17: Using Equations to Solve Problems
7 M4 Topic D: Area and Surface Area
7 M4 Lesson 24: Volume of Prisms
7 M4 Lesson 25: Volume of Composite Solids
7 M4 Lesson 26: Designing a Fish Tank
7 M5 Topic D: Applications of Percent

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math²

7.1.2.5	7 M1 Lesson 7: Handstand Sprint
Use proportional reasoning to solve problems involving ratios in various contexts.	7 M1 Lesson 10: Applying Proportional Reasoning
	7 M1 Lesson 11: Constant Rates
	7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
	7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
	7 M5 Lesson 2: Racing for Percents
	7 M5 Lesson 3: Percent as a Rate per 100
	7 M5 Lesson 4: Proportion and Percent
	7 M5 Lesson 5: Common Denominators or Common Numerators
	7 M5 Topic B: Part of 100
	7 M5 Topic C: More or Less Than 100\%
	7 M5 Topic D: Applications of Percent
	7 M5 Lesson 20: Making Money, Day 1
	7 M5 Lesson 21: Making Money, Day 2
	7 M5 Lesson 22: Making Mixtures
	7 M5 Lesson 23: Percents of Percents
7.1.2.6	6 M3 Lesson 7: Absolute Value
Demonstrate an understanding of the relationship between the absolute value of a rational number and distance on a number line. Use the symbol for absolute value.	6 M3 Lesson 8: Absolute Value and Order
	6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations

Algebra

Understand the concept of proportionality in real-world and mathematical situations, and distinguish between
proportional and other relationships. proportional and other relationships.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math²

7.2.1.1

Understand that a relationship between two variables, x and y, is proportional if it can be expressed in the form $\frac{y}{x}=k$ or $y=k x$. Distinguish proportional relationships from other relationships, including inversely proportional relationships ($x y=k$ or $y=\frac{k}{x}$).

7 M1 Lesson 2: Exploring Tables of Proportional Relationships
7 M1 Lesson 3: Identifying Proportional Relationships in Tables
7 M1 Lesson 8: Relating Representations of Proportional Relationships
7 M1 Lesson 10: Applying Proportional Reasoning
7 M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M5 Lesson 1: Proportionality and Scale Factor
7 M5 Lesson 4: Proportion and Percent
7 M5 Lesson 5: Common Denominators or Common Numerators

Supplemental material is necessary to address inversely proportional relationships.

7 M1 Lesson 4: Exploring Graphs of Proportional Relationships
7 M1 Lesson 5: Analyzing Graphs of Proportional Relationships
7 M1 Lesson 9: Comparing Proportional Relationships
8 M4 Lesson 15: Comparing Proportional Relationships
8 M4 Lesson 16: Proportional Relationships and Slope

Supplemental material is necessary to address using graphing technology to examine what happens to a line when the unit rate is changed.

Algebra

Recognize proportional relationships in real-world and mathematical situations; represent these and other relationships with tables, verbal descriptions, symbols and graphs; solve problems involving proportional relationships and explain results in the original context.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.2.2.1

Represent proportional relationships with tables, verbal descriptions, symbols, equations and graphs; translate from one representation to another. Determine the unit rate (constant of proportionality or slope) given any of these representations.

7.2.2.2

Solve multi-step problems involving proportional relationships in numerous contexts.
7 M1 Lesson 4: Exploring Graphs of Proportional Relationships
7 M1 Lesson 5: Analyzing Graphs of Proportional Relationships
7 M1 Lesson 6: Identifying Proportional Relationships in Written Descriptions
7 M1 Lesson 8: Relating Representations of Proportional Relationships
7 M1 Lesson 9: Comparing Proportional Relationships
7 M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M1 Lesson 16: Using a Scale Factor
7 M1 Lesson 18: Relating Areas of Scale Drawings
7 M1 Lesson 7: Handstand Sprint
7 M1 Lesson 10: Applying Proportional Reasoning
7 M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M5 Lesson 2: Racing for Percents
7 M5 Lesson 3: Percent as a Rate per 100
7 M5 Lesson 4: Proportion and Percent
7 M5 Lesson 5: Common Denominators or Common Numerators
7 M5 Topic B: Part of 100
7 M1 Lesson 4: Exploring Graphs of Proportional Relationships
7 M1 Lesson 5: Analyzing Graphs of Proportional Relationships
7 M1 Lesson 6: Identifying Proportional Relationships in Written Descriptions
7 M1 Lesson 8: Relating Representations of Proportional Relationships
7 M1 Lesson 9: Comparing Proportional Relationships
7 M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M1 Lesson 16: Using a Scale Factor
7 M1 Lesson 18: Relating Areas of Scale Drawings
7 M1 Lesson 7: Handstand Sprint
7 M1 Lesson 10: Applying Proportional Reasoning
7 M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part 1
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M5 Lesson 2: Racing for Percents
7 M5 Lesson 3: Percent as a Rate per 100
7 M5 Lesson 4: Proportion and Percent
7 M5 Topic B: Part of 100

Minnesota K-12 Academic
Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.2.2.2 continued

7 M5 Lesson 10: Percent Increase
7 M5 Lesson 11: Percent Decrease
7 M5 Lesson 12: More Discounts
7 M5 Lesson 13: What Is the Best Deal?
7 M5 Topic D: Applications of Percent
7 M5 Lesson 20: Making Money, Day 1
7 M5 Lesson 21: Making Money, Day 2
7 M5 Lesson 22: Making Mixtures
7 M5 Lesson 23: Percents of Percents
Supplemental material is necessary to address this standard.
7 M3 Lesson 11: Dominoes and Dominoes
7 M3 Lesson 12: Solving Problems Algebraically and Arithmetically
7 M3 Lesson 13: Solving Equations-Puzzles
7 M3 Lesson 16: Using Equations to Solve Rate Problems
7 M3 Lesson 17: Using Equations to Solve Problems
7 M3 Lesson 18: Understanding Inequalities and Their Solutions
7 M3 Lesson 19: Using Equations to Solve Inequalities
7 M3 Lesson 21: Solving Two-Step Inequalities
7 M3 Lesson 22: Solving Problems Involving Inequalities
7 M3 Lesson 23: Inequalities vs. Equations
7 M5 Lesson 10: Percent Increase
7 M5 Lesson 11: Percent Decrease
7 M5 Lesson 12: More Discounts
7 M5 Lesson 13: What Is the Best Deal?
7 M5 Topic D: Applications of Percent
7 M5 Lesson 20: Making Money, Day 1
7 M5 Lesson 21: Making Money, Day 2
7 M5 Lesson 22: Making Mixtures
7 M5 Lesson 23: Percents of Percents
7.2.2.3

Use knowledge of proportions to assess the reasonableness of solutions.

7.2.2.4

Represent real-world or mathematical situations using equations and inequalities involving variables and positive and negative rational numbers.

7 M3 Lesson 11: Dominoes and Dominoes
7 M3 Lesson 12: Solving Problems Algebraically and Arithmetically
7 M3 Lesson 13: Solving Equations-Puzzles
7 M3 Lesson 16: Using Equations to Solve Rate Problems
7 M3 Lesson 17: Using Equations to Solve Problems
7 M3 Lesson 18: Understanding Inequalities and Their Solutions
7 M3 Lesson 19: Using Equations to Solve Inequalities
7 M3 Lesson 21: Solving Two-Step Inequalities

7 M3 Lesson 23: Inequalities vs. Equations

Algebra

Apply understanding of order of operations and algebraic properties to generate equivalent numerical and algebraic expressions containing positive and negative rational numbers and grouping symbols; evaluate such expressions.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math²

7.2.3.1	7 M3 Lesson 2: The Distributive Property and the Tabular Model
Use properties of algebra to generate equivalent numerical and algebraic expressions containing rational numbers, grouping symbols and whole-number exponents. Properties of algebra include associative, commutative and distributive laws.	7 M 3 Lesson 4: Adding and Subtracting Expressions 7 M 3 Lesson 5: Factoring Expressions
7.2.3.2 Lesson 6: Comparing Expressions	
Evaluate algebraic expressions containing rational numbers and whole-number exponents at specified values of their variables.	Supplementary material is necessary to address evaluating algebraic expressions containing whole-number exponents.
7.2.3.3	7 M3 Lesson 2: The Distributive Property and the Tabular Model
Apply understanding of order	
of operations and grouping symbols when	
using calculators and other technologies.	

Algebra

Represent real-world and mathematical situations using equations with variables. Solve equations symbolically, using the properties of equality. Also solve equations graphically and numerically. Interpret solutions in the original context.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.2.4.1

Represent relationships in various contexts with equations involving variables and positive and negative rational numbers. Use the properties of equality to solve for the value of a variable. Interpret the solution in the original context.

7.2.4.2

Solve equations resulting from proportional relationships in various contexts.

```
7 M3 Lesson 7: Angle Relationships and Unknown Angle Measures
7M3 Lesson 8: Strategies to Determine Unknown Angle Measures
7 M3 Lesson 12: Solving Problems Algebraically and Arithmetically
7 M3 Lesson 13: Solving Equations-Puzzles
7 M3 Lesson 14: Solving Equations-Scavenger Hunt
7M3 Lesson 15: Solving Equations Fluently
7 M3 Lesson 16: Using Equations to Solve Rate Problems
7 M1 Lesson 7: Handstand Sprint
7M1 Lesson 10: Applying Proportional Reasoning
7M1 Lesson 11: Constant Rates
7 M1 Lesson 12: Multi-Step Ratio Problems, Part }
7 M1 Lesson 13: Multi-Step Ratio Problems, Part 2
7 M5 Lesson 2: Racing for Percents
7 M5 Lesson 3: Percent as a Rate per }10
7 M5 Lesson 4: Proportion and Percent
7 M5 Lesson 5: Common Denominators or Common Numerators
7 M5 Topic B: Part of 100
7 M5 Lesson 10: Percent Increase
7 M5 Lesson 11: Percent Decrease
7M5 Lesson 12: More Discounts
7 M5 Lesson 13: What Is the Best Deal?
```

Minnesota K-12 Academic
Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.2.4.2 continued

```
7 M5 Topic D: Applications of Percent
7M5 Lesson 20: Making Money, Day 1
7 M5 Lesson 21: Making Money, Day }
7 M5 Lesson 22: Making Mixtures
7 M5 Lesson 23: Percents of Percents
```

Geometry \& Measurement
Use reasoning with proportions and ratios to determine measurements, justify formulas and solve real-world and mathematical problems involving circles and related geometric figures.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.3.1.1

Demonstrate an understanding of the proportional relationship between the diameter and circumference of a circle and that the unit rate (constant of proportionality) is π. Calculate the circumference and area of circles and sectors of circles to solve problems in various contexts.

7.3.1.2

Calculate the volume and surface area of cylinders and justify the formulas used.
7 M4 Lesson 10: The Outside of a Circle
7 M4 Lesson 11: The Inside of a Circle
7 M4 Lesson 12: Exploring the Area and Circumference of a Circle
7 M4 Lesson 13: Finding Areas of Circular Regions
7 M4 Lesson 14: Composite Figures with Circular Regions
7 M4 Lesson 15: Watering a Lawn

7 M4 Lesson 15: Watering a Lawn

7 M4 Lesson 19: Surface Area of Cylinders
8 M6 Lesson 22: Volume of Cylinders

Geometry \& Measurement

Analyze the effect of change of scale, translations and reflections on the attributes of two-dimensional figures.

Minnesota K-12 Academic Standards in Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

7.3.2.1

Describe the properties of similarity, compare geometric figures for similarity, and determine scale factors.

7.3.2.2

Apply scale factors, length ratios and area ratios to determine side lengths and areas of similar geometric figures.

7.3.2.3

Use proportions and ratios to solve problems involving scale drawings and conversions of measurement units.

8 M3 Topic C: Similar Figures

7 M1 Lesson 16: Using a Scale Factor

7 M1 Lesson 17: Finding Actual Distances from a Scale Drawing
7 M1 Lesson 18: Relating Areas of Scale Drawings
7 M1 Lesson 19: Scale and Scale Factor
8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
8 M3 Lesson 15: Applications of Similar Figures
8 M3 Lesson 16: Similar Right Triangles

7 M1 Lesson 15: Scale Drawings
7 M1 Lesson 16: Using a Scale Factor
7 M1 Lesson 17: Finding Actual Distances from a Scale Drawing
7 M1 Lesson 18: Relating Areas of Scale Drawings
7 M1 Lesson 19: Scale and Scale Factor
7 M1 Lesson 20: Creating Multiple Scale Drawings
7 M3 Lesson 17: Using Equations to Solve Problems
7 M5 Lesson 1: Proportionality and Scale Factor
7 M5 Lesson 14: Scale Factor-Percent Increase and Decrease
Supplemental material is necessary to address conversions of measurement units.

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.3.2.4

Graph and describe translations and reflections of figures on a coordinate grid and determine the coordinates of the vertices of the figure after the transformation.

8 M2 Lesson 4: Translations and Reflections on the Coordinate Plane
8 M2 Lesson 9: Ordering Sequences of Rigid Motions

Data Analysis \& Probability

 Use mean, median and range to draw conclusions about data and make predictions.Minnesota K-12 Academic Standards in Mathematics
\section*{Aligned Components of Eureka Math ${ }^{2}$}

7.4.1.1

Design simple experiments and collect data. Determine mean, median and range for quantitative data and from data represented in a display. Use these quantities to draw conclusions about the data, compare different data sets, and make predictions.

```
6 \text { M6 Lesson 2: Describing a Data Distribution}
6 \text { M6 Lesson 7: Using the Mean to Describe the Center}
6 M6 Lesson 8: The Mean as a Balance Point
6 \text { M6 Lesson 9: Variability in a Data Distribution}
6 \text { M6 Lesson 12: Using the Median to Describe the Center}
6 \text { M6 Lesson 15: More Practice with Box Plots}
6 \text { M6 Lesson 16: Interpreting Box Plots}
6 \text { M6 Lesson 19: Comparing Data Distributions}
6 M6 Lesson 22: Presenting Statistical Projects
```

Minnesota K-12 Academic Standards in Mathematics

Aligned Components of Eureka Math ${ }^{2}$

7.4.1.2

Supplemental material is necessary to address this standard.
Describe the impact that inserting or deleting a data point has on the mean and the median of a data set Know how to create data displays using a spreadsheet to examine this impact.

Data Analysis \& Probability

 Display and interpret data in a variety of ways, including circle graphs and histograms.Minnesota K-12 Academic
Standards in Mathematics
Aligned Components of Eureka Math ${ }^{2}$

7.4.2.1

Use reasoning with proportions to display and interpret data in circle graphs (pie charts) and histograms. Choose the appropriate data display and know how to create the display using a spreadsheet or other graphing technology.

6 M6 Lesson 5: Comparing Data Displays

Supplemental material is necessary to address interpreting data in circle graphs and using technology to create a data display.

Data Analysis \& Probability

Calculate probabilities and reason about probabilities using proportions to solve real-world and mathematical problems.

Minnesota K-12 Academic Standards in Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

7.4.3.1
Use random numbers generated by a
calculator or a spreadsheet or taken from
a table to simulate situations involving
randomness, make a histogram to display
the results, and compare the results
to known probabilities.

7.4.3.2

Calculate probability as a fraction of sample space or as a fraction of area.
Express probabilities as percents, decimals and fractions.

[^0]
7.4.3.3

[^0]: 7 M6 Lesson 2: Empirical Probability
 7 M6 Lesson 4: Theoretical Probability
 7 M6 Lesson 5: Multistage Experiments
 7 M6 Lesson 6: Outcomes That Are Not Equally Likely
 7 M6 Lesson 7: The Law of Large Numbers
 7 M6 Lesson 8: Picking Blue
 7 M6 Lesson 2: Empirical Probability
 7 M6 Lesson 4: Theoretical Probability

