When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K–5 mathematics curriculum in the country. Now, the Great Minds® teacher–writers have created *Eureka Math*²®, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students’ mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher–writers have created one of the most readable mathematics curricula on the market. The curriculum’s readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students’ engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students’ interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.
<table>
<thead>
<tr>
<th>Standards for Mathematical Practice</th>
<th>Aligned Components of Eureka Math (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.1</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Make sense of problems and persevere in solving them.</td>
<td></td>
</tr>
<tr>
<td>MP.2</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Reason abstractly and quantitatively.</td>
<td></td>
</tr>
<tr>
<td>MP.3</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Construct viable arguments and critique the reasoning of others.</td>
<td></td>
</tr>
<tr>
<td>MP.4</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Model with mathematics.</td>
<td></td>
</tr>
<tr>
<td>MP.5</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Use appropriate tools strategically.</td>
<td></td>
</tr>
<tr>
<td>MP.6</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Attend to precision.</td>
<td></td>
</tr>
<tr>
<td>MP.7</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Look for and make use of structure.</td>
<td></td>
</tr>
<tr>
<td>MP.8</td>
<td>Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.</td>
</tr>
<tr>
<td>Look for and express regularity in repeated reasoning.</td>
<td></td>
</tr>
</tbody>
</table>
8 | North Dakota Mathematics Content Standards Correlation to *Eureka Math*

The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| **8.NS.1**
Know that numbers that are not rational are called irrational.
Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually.
Convert a decimal expansion which repeats eventually into a rational number. | 8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2 |

| **8.NS.2**
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (such as π^2). | 8 M1 Lesson 21: Approximating Values of Roots and π^2
8 M1 Lesson 23: Ordering Irrational Numbers |

Expressions and Equations

Work with radicals and integer exponents.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| **8.EE.1**
Develop, know and apply the properties of integer exponents to generate equivalent numeric and algebraic expressions. | 8 M1 Topic B: Properties and Definitions of Exponents |
North Dakota Mathematics Content Standards

<table>
<thead>
<tr>
<th>8.EE.2</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| Use square root and cube root symbols to represent solutions to equations of the form $x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Classify radicals as rational or irrational. | 8 M1 Lesson 16: Perfect Squares and Perfect Cubes
8 M1 Lesson 17: Solving Equations with Squares and Cubes
8 M1 Lesson 20: Square Roots
8 M1 Lesson 22: Familiar and Not So Familiar Numbers
8 M1 Lesson 24: Revisiting Equations with Squares and Cubes |

<table>
<thead>
<tr>
<th>8.EE.3</th>
<th></th>
</tr>
</thead>
</table>
| Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. | 8 M1 Lesson 1: Large and Small Positive Numbers
8 M1 Lesson 2: Comparing Large Numbers
8 M1 Lesson 3: Time to Be More Precise—Scientific Notation
8 M1 Lesson 7: Making Sense of the Exponent of 0
8 M1 Lesson 11: Small Positive Numbers in Scientific Notation |

<table>
<thead>
<tr>
<th>8.EE.4</th>
<th></th>
</tr>
</thead>
</table>
| Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (such as use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology. | 8 M1 Lesson 2: Comparing Large Numbers
8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation
8 M1 Lesson 12: Operations with Numbers in Scientific Notation
8 M1 Lesson 13: Applications with Numbers in Scientific Notation
8 M1 Lesson 14: Choosing Units of Measurement
8 M1 Lesson 15: Get to the Point |
Expressions and Equations

Understand the connections between proportional relationships, lines, and linear equations.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.EE.5</td>
<td>8 M4 Lesson 15: Comparing Proportional Relationships</td>
</tr>
<tr>
<td>Graph proportional relationships, interpreting the unit rate as the slope of the graph.</td>
<td>8 M4 Lesson 16: Proportional Relationships and Slope</td>
</tr>
<tr>
<td>Compare two different proportional relationships represented in different ways.</td>
<td></td>
</tr>
</tbody>
</table>

8.EE.6	8 M3 Lesson 17: Similar Triangles on a Line
Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane.	8 M4 Topic C: Linear Equations in Two Variables
Derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.	8 M4 Lesson 16: Proportional Relationships and Slope
	8 M4 Lesson 17: Slopes of Rising Lines
	8 M4 Lesson 18: Slopes of Falling Lines
	8 M4 Lesson 19: Using Coordinates to Find Slope
	8 M4 Topic E: Different Forms of Linear Equations
	8 M4 Topic F: Graphing and Writing Linear Equations
Expressions and Equations
Analyze and solve linear equations and pairs of simultaneous linear equations.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.EE.7</td>
<td>8 M4 Lesson 2: Solving Linear Equations</td>
</tr>
<tr>
<td>Solve linear equations in one variable.</td>
<td>8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients</td>
</tr>
<tr>
<td></td>
<td>8 M4 Lesson 4: Using Linear Equations to Solve Problems</td>
</tr>
<tr>
<td></td>
<td>8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems</td>
</tr>
<tr>
<td></td>
<td>8 M4 Lesson 11: Planning a Trip</td>
</tr>
</tbody>
</table>

8.EE.7.a	8 M4 Lesson 7: Linear Equations with More Than One Solution
Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions.	8 M4 Lesson 8: Another Possible Number of Solutions
Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form \(x = a \), \(a = a \), or \(a = b \) results (where \(a \) and \(b \) are different numbers).	8 M4 Lesson 9: Writing Linear Equations
	8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems

<p>| 8.EE.7.b | 8 M4 Lesson 1: Equations |
| Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. | 8 M4 Lesson 2: Solving Linear Equations |
| | 8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients |
| | 8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1 |
| | 8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2 |
| | 8 M4 Lesson 7: Linear Equations with More Than One Solution |</p>
<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| 8.EE.7.b continued | 8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip |
| 8.EE.8 | This standard is fully addressed by the lessons aligned to its subsections. |
| 8.EE.8.a | 8 M5 Topic A: Solving Systems of Linear Equations Graphically
8 M5 Lesson 7: The Substitution Method
8 M5 Lesson 10: Choosing a Solution Method
8 M5 Lesson 14: Back to the Coordinate Plane |
| 8.EE.8.b | 8 M5 Lesson 1: Solving Problems with Equations and Their Graphs
8 M5 Lesson 3: Identifying Solutions
8 M5 Lesson 4: More Than One Solution
8 M5 Lesson 5: Estimating Solutions
8 M5 Topic B: Solving Systems of Equations Algebraically
8 M5 Topic C: Writing and Solving Systems of Linear Equations |
| 8.EE.8.c | 8 M5 Lesson 1: Solving Problems with Equations and Their Graphs
8 M5 Topic C: Writing and Solving Systems of Linear Equations |
Functions

Define, evaluate, and compare functions.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| **8.F.1**
Understand that a function is a rule that assigns to each input exactly one output.
Understand that the graph of a function is the set of ordered pairs consisting of an input and the corresponding output. | 8 M6 Lesson 1: Motion and Speed
8 M6 Lesson 2: Definition of a Function
8 M6 Lesson 4: More Examples of Functions
8 M6 Lesson 5: Graphs of Functions and Equations |
| **8.F.2**
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, and/or by verbal descriptions). | 8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 8: Comparing Functions |
| **8.F.3**
Interpret the equation \(y = mx + b \) as defining a linear function, whose graph is a straight line.
Give examples of functions that are not linear. | 8 M6 Lesson 3: Linear Functions and Proportionality
8 M6 Lesson 6: Linear Functions and Rate of Change
8 M6 Lesson 10: Graphs of Nonlinear Functions |
Functions

Use functions to model relationships between quantities.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.F.4</td>
<td>8 M6 Lesson 6: Linear Functions and Rate of Change</td>
</tr>
<tr>
<td>Construct a function to model a linear relationship between two quantities.</td>
<td>8 M6 Lesson 7: Interpreting Rate of Change and Initial Value</td>
</tr>
<tr>
<td>Determine the rate of change and initial value of the function from a description of a relationship or from two ((x, y)) values, including reading these from a table or from a graph.</td>
<td>8 M6 Lesson 25: Applications of Volume</td>
</tr>
<tr>
<td>Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.</td>
<td></td>
</tr>
</tbody>
</table>

8.F.5	8 M6 Lesson 9: Increasing and Decreasing Functions
Describe qualitatively the functional relationship between two quantities by analyzing a graph (may include where the function is increasing or decreasing, linear or nonlinear, etc.).	8 M6 Lesson 10: Graphs of Nonlinear Functions
Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	
Geometry
Understand congruence and similarity using physical models, transparencies, or geometry software.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.G.1 Understand the properties of rotations, reflections, and translations by experimentation:</td>
<td>This standard is fully addressed by the lessons aligned to its subsections.</td>
</tr>
</tbody>
</table>
| 8.G.1.a Lines are transformed onto lines, and line segments onto line segments of the same length. | 8 M2 Lesson 1: Motions of the Plane
8 M2 Lesson 2: Translations
8 M2 Lesson 3: Reflections
8 M2 Lesson 5: Rotations
8 M2 Lesson 7: Working Backward
8 M2 Lesson 8: Sequencing the Rigid Motions |
| 8.G.1.b Angles are transformed onto angles of the same measure. | 8 M2 Lesson 1: Motions of the Plane
8 M2 Lesson 2: Translations
8 M2 Lesson 3: Reflections
8 M2 Lesson 5: Rotations
8 M2 Lesson 7: Working Backward
8 M2 Lesson 8: Sequencing the Rigid Motions |
<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| **8.G.1.c** Parallel lines are transformed onto parallel lines. | 8 M2 Lesson 1: Motions of the Plane
8 M2 Lesson 2: Translations
8 M2 Lesson 3: Reflections
8 M2 Lesson 5: Rotations
8 M2 Lesson 7: Working Backward
8 M2 Lesson 8: Sequencing the Rigid Motions |
| **8.G.2** Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Given two congruent figures, describe a sequence of transformations that exhibits the congruence between them. | 8 M2 Topic B: Rigid Motions and Congruent Figures
8 M2 Lesson 12: Lines Cut by a Transversal |
| **8.G.3** Describe the effect of dilations, translations, rotations and reflections on two-dimensional figures using coordinates. | 8 M2 Lesson 4: Translations and Reflections on the Coordinate Plane
8 M2 Lesson 6: Rotations on the Coordinate Plane
8 M2 Lesson 9: Ordering Sequences of Rigid Motions
8 M3 Topic A: Dilations
8 M3 Topic B: Properties of Dilations
8 M3 Lesson 9: Describing Dilations
8 M3 Lesson 10: Sequencing Transformations
8 M3 Lesson 16: Similar Right Triangles |
North Dakota Mathematics Content Standards

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.G.4</td>
<td>8 M3 Lesson 11: Similar Figures</td>
</tr>
</tbody>
</table>
| Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Given two similar two-dimensional figures, describe a sequence of transformations that exhibits the similarity between them. | 8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 17: Similar Triangles on a Line |
| **8.G.5** | 8 M2 Topic C: Angle Relationships |
| Use informal arguments to establish facts about: | 8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
8 M3 Lesson 15: Applications of Similar Figures
8 M3 Lesson 16: Similar Right Triangles |
| **8.G.5.a** | 8 M2 Topic C: Angle Relationships |
| the angle sum and exterior angles of triangles. | 8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
8 M3 Lesson 15: Applications of Similar Figures
8 M3 Lesson 16: Similar Right Triangles |

This standard is fully addressed by the lessons aligned to its subsections.
North Dakota Mathematics Content Standards Correlation to *Eureka Math*²

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.G.5.b</td>
<td>8 M2 Topic C: Angle Relationships</td>
</tr>
<tr>
<td>the angles created when parallel lines are cut by a transversal.</td>
<td>8 M3 Lesson 12: Exploring Angles in Similar Triangles</td>
</tr>
<tr>
<td></td>
<td>8 M3 Lesson 13: Similar Triangles</td>
</tr>
<tr>
<td></td>
<td>8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths</td>
</tr>
<tr>
<td></td>
<td>8 M3 Lesson 15: Applications of Similar Figures</td>
</tr>
<tr>
<td></td>
<td>8 M3 Lesson 16: Similar Right Triangles</td>
</tr>
</tbody>
</table>

8.G.5.c	**8 M2 Topic C: Angle Relationships**
the angle-angle criterion for similarity of triangles.	**8 M3 Lesson 12: Exploring Angles in Similar Triangles**
	8 M3 Lesson 13: Similar Triangles
	8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
	8 M3 Lesson 15: Applications of Similar Figures
	8 M3 Lesson 16: Similar Right Triangles

Geometry

Understand and apply the Pythagorean Theorem.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.G.6</td>
<td>8 M2 Lesson 17: Proving the Pythagorean Theorem</td>
</tr>
<tr>
<td>Explain a proof of the Pythagorean Theorem and its converse.</td>
<td>8 M2 Lesson 18: Proving the Converse of the Pythagorean Theorem</td>
</tr>
<tr>
<td></td>
<td>8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse</td>
</tr>
</tbody>
</table>
North Dakota Mathematics Content Standards

<table>
<thead>
<tr>
<th>8.G.7</th>
<th>Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.</th>
</tr>
</thead>
</table>
| | 8 M1 Lesson 18: The Pythagorean Theorem
8 M1 Lesson 19: Using the Pythagorean Theorem
8 M1 Lesson 20: Square Roots
8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
8 M2 Lesson 21: Applying the Pythagorean Theorem
8 M2 Lesson 22: On the Right Path
8 M3 Lesson 16: Similar Right Triangles |

<table>
<thead>
<tr>
<th>8.G.8</th>
<th>Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.</th>
</tr>
</thead>
</table>
| | 8 M2 Lesson 20: Distance in the Coordinate Plane
8 M2 Lesson 22: On the Right Path |

Geometry

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.G.9</td>
<td>8 M6 Topic E: Volume</td>
</tr>
</tbody>
</table>

| Know the formulas for the volume of cones, cylinders and spheres.
Use the formulas to solve real-world and mathematical problems. | 8 M6 Topic E: Volume |
Statistics and Probability
Investigate patterns of association in bivariate data.

<table>
<thead>
<tr>
<th>North Dakota Mathematics Content Standards</th>
<th>Aligned Components of Eureka Math²</th>
</tr>
</thead>
</table>
| **8.SP.1**
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities.
Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. | 8 M6 Lesson 11: Scatter Plots
8 M6 Lesson 12: Patterns in Scatter Plots |
| **8.SP.2**
Know that straight lines are widely used to model relationships between two quantitative variables.
For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. | 8 M6 Lesson 13: Informally Fitting a Line to Data
8 M6 Lesson 15: Linear Models
8 M6 Lesson 16: Using the Investigative Process
8 M6 Lesson 17: Analyzing the Model |
| **8.SP.3**
Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept(s). | 8 M6 Lesson 6: Linear Functions and Rate of Change
8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 14: Determining an Equation of a Line Fit to Data
8 M6 Lesson 15: Linear Models
8 M6 Lesson 16: Using the Investigative Process
8 M6 Lesson 17: Analyzing the Model |
North Dakota Mathematics Content Standards

<table>
<thead>
<tr>
<th>8.SP.4</th>
<th>Aligned Components of Eureka Math(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.</td>
<td>8 M6 Topic D: Bivariate Categorical Data</td>
</tr>
</tbody>
</table>