Grade 3 | Oklahoma Academic Standards for Mathematics Correlation to Eureka Math ${ }^{\text {®® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Actions and Processes	Aligned Components of Eureka Math²
Develop a Deep and Flexible Conceptual Understanding	Lessons in every module engage students in mathematical actions and processes.
Develop Accurate and Appropriate Procedural Fluency	Lessons in every module engage students in mathematical actions and processes.
Develop Strategies for Problem Solving	Lessons in every module engage students in mathematical actions and processes.
Develop Mathematical Reasoning	Lessons in every module engage students in mathematical actions and processes.
Develop a Productive Mathematical Disposition	Lessons in every module engage students in mathematical actions and processes.
Develop the Ability to Make Conjectures, Model, and Generalize	Lessons in every module engage students in mathematical actions and processes.
Develop the Ability to Communicate Mathematically	Lessons in every module engage students in mathematical actions and processes.

Numbers \& Operations

3.N. 1 Compare and represent whole numbers up to $\mathbf{1 0 0 , 0 0 0}$ with an emphasis on place value and equality.

Oklahoma Academic Standards
 for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

3.N.1.1

Read, write, discuss, and represent whole numbers up to 100,000 .
Representations should include but are not limited to numerals, words, pictures, number lines, and manipulatives (e.g., $350=3$ hundreds, 5 tens $=35$ tens $=$ 3 hundreds, 4 tens, 10 ones).

3.N.1.2

Use place value to describe whole numbers between 1,000 and 100,000 in terms of ten thousands, thousands, hundreds, tens and ones, including written, standard, and expanded forms.

3.N.1.3

Applying knowledge of place values, use mental strategies (no written computations) to find 100 more or 100 less than a given number, 1,000 more or 1,000 less than a given number, and 10,000 more or 10,000 less than a given number, up to a five-digit number.

4 M1 Lesson 5: Organize, count, and represent a collection of objects.
4 M1 Lesson 7: Write numbers to $1,000,000$ in unit form and expanded form by using
place value structure.
4 M1 Lesson 8: Write numbers to 1,000,000 in standard form and word form.
4 M1 Lesson 10: Name numbers by using place value understanding.

4 M1 Lesson 7: Write numbers to 1,000,000 in unit form and expanded form by using place value structure.

4 M1 Lesson 8: Write numbers to 1,000,000 in standard form and word form.
4 M1 Lesson 10: Name numbers by using place value understanding.

4 M1 Lesson 11: Find 1, 10, and 100 thousand more than and less than a given number.
Supplemental material is necessary to address finding 100 more or 100 less than a given number.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.N.1.4

Use place value to compare and order whole numbers, up to 100,000 , using comparative language, numbers, and symbols.

3.N.1.5

Use place value understanding to round numbers to the nearest thousand, ten-thousand and hundred thousand.

4 M1 Lesson 9: Compare numbers within 1,000,000 by using >, =, and <.

4 M1 Lesson 12: Round to the nearest thousand.
4 M1 Lesson 13: Round to the nearest ten thousand and hundred thousand.
4 M1 Lesson 14: Round multi-digit numbers to any place.
4 M1 Lesson 15: Apply estimation to real-world situations by using rounding.

Numbers \& Operations

3.N. 2 Solve real-world and mathematical problems using addition, subtraction, multiplication, and division.

Oklahoma Academic Standards
for Mathematics

3.N.2.1

Represent multiplication facts by modeling a variety of approaches (e.g., manipulatives, repeated addition, equal-sized groups, arrays, area models, equal jumps on a number line, skip counting).

Aligned Components of Eureka Math ${ }^{2}$

3 M1 Lesson 2: Interpret equal groups as multiplication.
3 M1 Lesson 3: Relate multiplication to the array model.
3 M1 Lesson 4: Interpret the meaning of factors as number of groups or number in each group.
3 M1 Lesson 5: Represent and solve multiplication word problems by using drawings and equations.
3 M1 Lesson 10: Demonstrate the commutative property of multiplication using a unit of 2 and the array model.

3 M1 Lesson 11: Demonstrate the commutative property of multiplication using a unit of 4 and the array model.

3 M1 Lesson 13: Demonstrate the commutative property of multiplication using a unit of 3 and the array model.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.N.2.1 continued

3.N.2.2

Demonstrate fluency with multiplication facts using factors up to 10 .

3 M3 Lesson 2: Count by units of 6 to multiply and divide by using arrays.
3 M3 Lesson 3: Count by units of 8 to multiply and divide by using arrays.
3 M3 Lesson 4: Decompose pictorial arrays to create expressions with three factors.
3 M3 Lesson 5: Use the break apart and distribute strategy to multiply with units of 6 and 8.
3 M3 Lesson 7: Count by units of 7 to multiply and divide by using arrays and tape diagrams.
3 M3 Lesson 8: Use the break apart and distribute strategy to multiply with units of 7.
3 M3 Lesson 9: Model the associative property as a strategy to multiply.
3 M3 Lesson 13: Count by units of 9 to multiply.
3 M3 Lesson 14: Apply strategies and identify patterns to multiply with units of 9 .
3 M3 Lesson 15: Reason about and explain patterns of multiplication and division with units of 1 and 0 .

3 M3 Lesson 18: Create multiplication and division word problems.

3 M1 Lesson 12: Demonstrate the distributive property using a unit of 4.
3 M1 Lesson 14: Demonstrate the distributive property using units of 2, 3, 4, 5, and 10 .
3 M1 Lesson 19: Use the distributive property to break apart multiplication problems into known facts.
3 M1 Lesson 22: Represent and solve two-step word problems using the properties of multiplication.
3 M3 Lesson 1: Organize, count, and represent a collection of objects.
3 M3 Lesson 5: Use the break apart and distribute strategy to multiply with units of 6 and 8 .
3 M3 Lesson 7: Use the break apart and distribute strategy to multiply with units of 7.
3 M3 Lesson 14: Apply strategies and identify patterns to multiply with units of 9 .
3 M3 Lesson 17: Identify and complete patterns with input-output tables.
3 M3 Lesson 24: Organize, count, and represent a collection of objects.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math²

3.N.2.3

Use strategies and algorithms based on knowledge of place value and equality to fluently add and subtract up to five-digit numbers (answer not to exceed 100,000).

3 M2 Lesson 12: Estimate sums and differences by rounding.
3 M2 Lesson 14: Use place value understanding to add and subtract like units.
3 M2 Lesson 15: Use the associative property to make the next ten to add.
3 M2 Lesson 16: Use compensation to add.
3 M2 Lesson 17: Use place value understanding to subtract efficiently using take from a ten.
3 M2 Lesson 18: Use place value understanding to subtract efficiently using take from a hundred.
3 M2 Lesson 19: Use compensation to subtract.
3 M2 Lesson 20: Add measurements using the standard algorithm to compose larger units once.
3 M2 Lesson 21: Add measurements using the standard algorithm to compose larger units twice.
3 M2 Lesson 22: Subtract measurements using the standard algorithm to decompose larger units once.

3 M2 Lesson 23: Subtract measurements using the standard algorithm to decompose larger units twice.

3 M2 Lesson 24: Subtract measurements using the standard algorithm to decompose larger units across two place values.
4 M1 Topic D: Multi-Digit Whole Number Addition and Subtraction

3 M2 Lesson 12: Estimate sums and differences by rounding.
4 M1 Lesson 15: Apply estimation to real-world situations by using rounding.

Recognize when to round numbers and apply understanding to estimate sums and differences to the nearest ten thousand, thousand, hundred, and ten.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.N.2.5

Use addition and subtraction to solve problems involving whole numbers. Use various strategies, including the relationship between addition and subtraction and the context of the problem to assess the reasonableness of results.

3.N.2.6

Represent division facts and divisibility by modeling a variety of approaches (e.g., repeated subtraction, equal sharing, forming equal groups) to show the relationship between multiplication and division.

3 M1 Topic B: Conceptual Understanding of Division

3 M1 Topic D: Two Interpretations of Division
3 M3 Lesson 2: Count by units of 6 to multiply and divide by using arrays.
3 M3 Lesson 3: Count by units of 8 to multiply and divide by using arrays.
3 M3 Lesson 6: Use the break apart and distribute strategy to divide with units of 6 and 8 .
3 M3 Lesson 7: Count by units of 7 to multiply and divide by using arrays and tape diagrams.
3 M3 Lesson 11: Use the break apart and distribute strategy to divide with units of 7.
3 M3 Lesson 15: Reason about and explain patterns of multiplication and division with units of 1 and 0 .

3 M3 Lesson 18: Create multiplication and division word problems.

3.N.2.7

Apply the relationship between multiplication and division to represent and solve problems.

3 M1 Lesson 5: Represent and solve multiplication word problems by using drawings and equations.
3 M1 Lesson 8: Model measurement and partitive division by drawing arrays.
3 M1 Lesson 9: Represent and solve division word problems using drawings and equations.

3 M2 Lesson 25: Solve two-step word problems.
4 M1 Lesson 21: Solve two-step word problems by using addition and subtraction.
4 M1 Lesson 22: Solve multi-step word problems by using addition and subtraction.

3 M1 Lesson 16: Model the quotient as the number of groups using units of 2, 3, 4, 5, and 10 .
3 M1 Lesson 17: Model the quotient as the size of each group using units of 2, 3, 4, 5, and 10 .
3 M1 Lesson 18: Represent and solve measurement and partitive division word problems.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math²

3.N.2.7 continued

3 M1 Lesson 22: Represent and solve two-step word problems using the properties of multiplication.
3 M1 Lesson 23: Represent and solve two-step word problems using drawings and equations.
3 M3 Lesson 2: Count by units of 6 to multiply and divide by using arrays.
3 M3 Lesson 7: Count by units of 7 to multiply and divide by using arrays and tape diagrams.
3 M3 Lesson 8: Use the break apart and distribute strategy to multiply with units of 7.
3 M3 Lesson 12: Solve one-step word problems involving multiplication and division.
3 M3 Lesson 25: Apply multiplication and division concepts to complete a multi-part task.

3.N.2.8

Use various strategies (e.g., base ten blocks, area models, arrays, repeated addition, algorithms) based on knowledge of place value, equality, and properties of addition and multiplication to multiply a two-digit factor by a one-digit factor.

3 M3 Lesson 20: Multiply by multiples of 10 by using the place value chart.
3 M5 Lesson 21: Multiply by multiples of 10 by using place value strategies and the associative property.

3 M5 Lesson 23: Identify patterns and apply strategies to multiply with units of 11 and 12 .
4 M2 Lesson 1: Multiply multiples of 10 by one-digit numbers by using the associative property of multiplication.
4 M2 Topic B: Multiplication of Tens and Ones by One-Digit Numbers

Numbers \& Operations

3.N. 3 Use and justify fractional representations in real-world and mathematical problems.

Oklahoma Academic Standards
 for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

3.N.3.1

Read and write fractions with words and symbols using appropriate terminology (i.e., numerator and denominator).

3.N.3.2

Model fractions using length, set, and area for halves, thirds, fourths, sixths, and eighths.

3 M5 Lesson 1: Partition a whole into equal parts and name the fractional unit.
3 M5 Lesson 4: Partition a whole into fractional units pictorially and identify the unit fraction.
3 M5 Lesson 5: Partition a whole into fractional units and write fractions in fraction form.
3 M5 Lesson 6: Build non-unit fractions less than 1 from unit fractions concretely.
3 M5 Lesson 7: Identify and represent a whole as two parts: a unit fraction and a non-unit fraction.
3 M5 Lesson 8: Identify and represent a whole as two non-unit fractions.
3 M5 Lesson 27: Apply fraction concepts to complete a multi-part task.
3 M5 Lesson 2: Partition different wholes into fractional units concretely.
3 M5 Lesson 3: Partition a whole into fractional units by folding fraction strips.
3 M5 Lesson 4: Partition a whole into fractional units pictorially and identify the unit fraction.
3 M5 Lesson 5: Partition a whole into fractional units and write fractions in fraction form.
3 M5 Lesson 6: Build non-unit fractions less than 1 from unit fractions concretely.
3 M5 Lesson 7: Identify and represent a whole as two parts: a unit fraction and a non-unit fraction.
3 M5 Lesson 8: Identify and represent a whole as two non-unit fractions.
3 M5 Lesson 11: Locate fractions from 0 to 1 on a number line by using fraction tiles.
3 M5 Lesson 12: Represent fractions from 0 to 1 on a number line.
3 M5 Lesson 13: Identify equivalent fractions from 0 to 1 with tape diagrams and on number lines.
3 M5 Lesson 14: Recognize that equivalent fractions share the same location on a number line.
3 M5 Lesson 17: Represent fractions greater than 1 on a number line and identify fractions equivalent to whole numbers.

3 M5 Lesson 27: Apply fraction concepts to complete a multi-part task.
Supplemental material is necessary to address fractions of a set.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.N.3.3

Apply understanding of unit fractions and use this understanding to compose and decompose fractions related to the same whole.

3.N.3.4

Use models and number lines to order and compare fractions that are related to the same whole.

3 M5 Lesson 4: Partition a whole into fractional units pictorially and identify the unit fraction.
3 M5 Lesson 5: Partition a whole into fractional units and write fractions in fraction form.
3 M5 Lesson 6: Build non-unit fractions less than 1 from unit fractions concretely.
3 M5 Lesson 7: Identify and represent a whole as two parts: a unit fraction and a non-unit fraction.
3 M5 Lesson 8: Identify and represent a whole as two non-unit fractions.
3 M5 Lesson 27: Apply fraction concepts to complete a multi-part task.

3 M5 Lesson 9: Compare unit fractions by reasoning about their size concretely.
3 M5 Lesson 10: Compare non-unit fractions less than 1 with the same numerator by using tape diagrams.
3 M5 Lesson 17: Represent fractions greater than 1 on a number line and identify fractions equivalent to whole numbers.

3 M5 Lesson 18: Compare fractions with like units by using a number line.
3 M5 Lesson 19: Compare fractions with unlike units but the same numerator by using number lines.
3 M5 Lesson 20: Compare fractions with related units by using a number line.
3 M5 Lesson 21: Compare various fractions by representing them on number lines.
3 M5 Lesson 27: Apply fraction concepts to complete a multi-part task.

Numbers \& Operations

3.N. 4 Determine the value of a set of coins and determine the value of a set of bills in monetary transactions.

Oklahoma Academic Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

3.N.4.1
Use addition and subtraction
to determine the value of a collection
of coins up to one dollar using the cent
symbol and in monetary transactions.

3.N.4.2

Add and subtract a collection of bills up to twenty dollars using whole dollars in monetary transactions.

Supplemental material is necessary to address this objective.

Supplemental material is necessary to address this objective.

Algebraic Reasoning \& Algebra

3.A. 1 Describe and create representations of numerical and geometric patterns.

Oklahoma Academic Standards
 for Mathematics

3.A.1.1

Create, describe, and extend patterns involving addition, subtraction, or multiplication to solve problems in a variety of contexts.

Aligned Components of Eureka Math ${ }^{2}$

3 M3 Lesson 14: Apply strategies and identify patterns to multiply with units of 9 .
3 M3 Lesson 15: Reason about and explain patterns of multiplication and division with units of 1 and 0 .

3 M3 Lesson 16: Identify patterns by using the multiplication table.
3 M3 Lesson 17: Identify and complete patterns with input-output tables.
3 M3 Lesson 23: Identify patterns and apply strategies to multiply with units of 11 and 12.
Supplemental material is necessary to fully address this objective.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.A.1.2	Supplemental material is necessary to address this objective.
Describe the rule (limited to a single operation) for a pattern from an input/output table or function machine involving addition, subtraction, or multiplication.	
$\mathbf{3 . A . 1 . 3}$	Supplemental material is necessary to address this objective.
Explore and develop visual representations of increasing and decreasing geometric patterns and construct the next steps.	

Algebraic Reasoning \& Algebra

3.A.2 Use number sentences involving multiplication and unknowns to represent and solve real-world and

 mathematical problems.
Oklahoma Academic Standards
 for Mathematics

3.A.2.1

Use number sense with the properties of addition, subtraction, and multiplication, to find unknowns (represented by symbols) in one-step equations. Generate real-world situations to represent number sentences.

Aligned Components of Eureka Math ${ }^{2}$

3 M1 Lesson 16: Model the quotient as the number of groups using units of 2, 3, 4, 5, and 10.
3 M1 Lesson 17: Model the quotient as the size of each group using units of 2, 3, 4, 5, and 10 .
3 M3 Lesson 2: Count by units of 6 to multiply and divide by using arrays.
3 M3 Lesson 3: Count by units of 8 to multiply and divide by using arrays.
3 M3 Lesson 7: Count by units of 7 to multiply and divide by using arrays and tape diagrams.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.A.2.2

Identify, represent, and apply the number properties (commutative, identity, and associative properties of addition and multiplication) using models and manipulatives to solve problems.

3 M1 Topic C: Properties of Multiplication

3 M1 Lesson 19: Use the distributive property to break apart multiplication problems into known facts.
3 M3 Lesson 1: Organize, count, and represent a collection of objects.
3 M3 Lesson 3: Count by units of 8 to multiply and divide by using arrays.
3 M3 Lesson 4: Decompose pictorial arrays to create expressions with three factors.
3 M3 Lesson 5: Use the break apart and distribute strategy to multiply with units of 6 and 8.
3 M3 Lesson 6: Use the break apart and distribute strategy to divide with units of 6 and 8.
3 M3 Lesson 8: Use the break apart and distribute strategy to multiply with units of 7.
3 M3 Lesson 9: Model the associative property as a strategy to multiply.
3 M3 Lesson 10: Use parentheses in expressions with different operations.
3 M3 Lesson 11: Use the break apart and distribute strategy to divide with units of 7 .
3 M3 Lesson 14: Apply strategies and identify patterns to multiply with units of 9 .
3 M3 Lesson 21: Multiply by multiples of 10 by using place value strategies and the associative property.

3 M3 Lesson 23: Identify patterns and apply strategies to multiply with units of 11 and 12 .
3 M3 Lesson 24: Organize, count, and represent a collection of objects.

Geometry \& Measurement

3.GM.1 Analyze and use geometric attributes to describe and create polygons and three-dimensional figures in various contexts.

Oklahoma Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.GM 1.1 Sort three-dimensional shapes based on attributes.	Supplemental material is necessary to address this objective.
3.GM.1.2	Supplemental material is necessary to address this objective.
Build a three-dimensional figure using unit cubes when shown a picture of a three-dimensional shape.	
3.GM.1.3	4 M6 Topic A: Lines and Angles
Classify angles within a polygon as acute, right, obtuse, and straight.	4 M 6 Lesson 18: Analyze and classify triangles based on side length, angle measures, or both.

Geometry \& Measurement

3.GM.2 Understand measurable attributes of real-world and mathematical objects using various tools.

Oklahoma Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.GM.2.1

Find the perimeter of a polygon, given whole number lengths of the sides, using a variety of models.

3 M6 Topic C: Problem Solving with Perimeter
3 M6 Lesson 19: Measure the perimeter of various circles to the nearest quarter inch by using string.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.GM.2.2

Analyze why length and width are multiplied to find the area of a rectangle by decomposing the rectangle into one unit by one unit squares and viewing these as rows and columns to determine the area.

3.GM.2.3

Count cubes systematically to identify the number of cubes needed to pack the whole or half of a three-dimensional structure.

3.GM.2.4

Find the area of two-dimensional figures by counting the total number of same-size unit squares that fill the shape without gaps or overlaps.

3 M4 Lesson 6: Tile rectangles with squares to make arrays and relate the side lengths to the area.
3 M4 Lesson 7: Draw rows and columns to complete a rectangular array and determine its area.
3 M4 Lesson 8: Determine the area of a rectangle by using side lengths.
3 M4 Lesson 12: Find all possible side lengths of rectangles with a given area.

Supplemental material is necessary to address this objective.

3 M4 Lesson 2: Recognize area as an attribute of polygons.

3 M4 Lesson 3: Tile polygons to find their areas.
3 M4 Lesson 4: Compose rectangles to compare areas.
3 M4 Lesson 5: Relate side lengths to the number of tiles on a side.
3 M4 Lesson 6: Tile rectangles with squares to make arrays and relate the side lengths to the area.
3 M4 Lesson 7: Draw rows and columns to complete a rectangular array and determine its area.
3 M4 Lesson 16: Solve historical math problems involving area.
3 M4 Lesson 18: Find the area of shapes and represent area data on a line plot.

Oklahoma Academic Standards for Mathematics

Aligned Components of Eureka Math²

3.GM.2.5 Choose an appropriate measurement instrument and measure the length of objects to the nearest whole centimeter or whole meter.	2 M1 Lesson 5: Connect measurement to physical units by iterating a centimeter cube. 2 M1 Lesson 6: Make a 10 cm ruler and measure objects. 2 M1 Lesson 7: Measure lengths and relate 10 cm and 1 cm . 2 M1 Lesson 8: Make a meter stick and measure with various tools. 2 M1 Lesson 13: Estimate and measure height to model metric relationships. 2 M5 Lesson 8: Iterate an inch tile to create a unit ruler and measure to the nearest inch. 2 M5 Lesson 9: Use an inch ruler and a yard stick to estimate and measure the length of various objects.
3.GM.2.6 Choose an appropriate measurement instrument and measure the length of objects to the nearest whole yard, whole foot, or half inch.	3 M5 Lesson 16: Measure lengths and record data on a line plot. 3 M6 Lesson 20: Record measurement data in a line plot. 3 M6 Lesson 21: Create and analyze a line plot for measurement data to the nearest half unit and quarter unit.
3.GM.2.7 Use an analog thermometer to determine temperature to the nearest degree in Fahrenheit and Celsius.	3 M2 Lesson 8: Read temperatures on a thermometer using number line concepts. Supplemental material is necessary to fully address this objective.

Geometry \& Measurement

3.GM. 3 Solve problems by telling time to the nearest five-minute interval.

Oklahoma Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

3.GM.3.1

Read and write time to the nearest five-minute interval (analog and digital).

2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.
3 M6 Lesson 1: Relate skip-counting by fives on the clock to telling time on the number line.
3 M6 Lesson 2: Count by fives and ones on the number line as a strategy for telling time to the nearest minute on the clock.

3 M6 Lesson 3: Solve time word problems where the end time is unknown.
3 M6 Lesson 4: Solve time word problems where the start time is unknown.
3 M6 Lesson 5: Solve time word problems where the change in time is unknown
3 M6 Lesson 6: Solve time word problems and use time data to create a line plot.

3 M6 Lesson 1: Relate skip-counting by fives on the clock to telling time on the number line.
3 M6 Lesson 2: Count by fives and ones on the number line as a strategy for telling time to the nearest minute on the clock.

3 M6 Lesson 3: Solve time word problems where the end time is unknown.
3 M6 Lesson 4: Solve time word problems where the start time is unknown.
3 M6 Lesson 5: Solve time word problems where the change in time is unknown
3 M6 Lesson 6: Solve time word problems and use time data to create a line plot

Data \& Probability

3.D. 1 Collect, organize, and analyze data.

Oklahoma Academic Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

3.D.1.1

Collect and organize a data set with multiple categories using a frequency table, line plot, pictograph, or bar graph with scaled intervals.

3 M2 Lesson 13: Collect and represent data in a scaled bar graph and solve related problems.
3 M5 Lesson 16: Measure lengths and record data on a line plot.
3 M6 Lesson 20: Record measurement data in a line plot.
3 M6 Lesson 21: Create and analyze a line plot for measurement data to the nearest half unit and quarter unit.

3 M6 Lesson 22: Generate categorical data and represent it by using a scaled picture graph.
3 M6 Lesson 23: Solve word problems by creating scaled picture graphs and scaled bar graphs.

3 M2 Lesson 13: Collect and represent data in a scaled bar graph and solve related problems.
3 M6 Lesson 22: Generate categorical data and represent it by using a scaled picture graph.
3 M6 Lesson 23: Solve word problems by creating scaled picture graphs and scaled bar graphs.

