Grade 8 | Rhode Island Core Standards for Mathematics Correlation to Eureka Math ${ }^{\mathbf{2 ®}}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

The Number System

A. Know that there are numbers that are not rational, and approximate them by rational numbers.

Rhode Island Core Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.NS.A. 1

Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion. For rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

8.NS.A. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}).

8 M1 Lesson 22: Familiar and Not So Familiar Numbers
8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M1 Lesson 21: Approximating Values of Roots and π^{2}
8 M1 Lesson 23: Ordering Irrational Numbers

Expressions and Equations

A. Work with radicals and integer exponents.

Rhode Island Core Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.EE.A. 1

Know and apply the properties of integer exponents to generate equivalent numerical expressions.

8 M1 Topic B: Properties and Definitions of Exponents

Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.EE.A. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

8.EE.A. 3

Use numbers expressed in the form of a single digit multiplied by an integer power of 10 to estimate very large or very small quantities, and express how many times as much one is than the other.

8.EE.A. 4

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

8 M1 Lesson 16: Perfect Squares and Perfect Cubes
8 M1 Lesson 17: Solving Equations with Squares and Cubes
8 M1 Lesson 20: Square Roots
8 M1 Lesson 22: Familiar and Not So Familiar Numbers
8 M1 Lesson 24: Revisiting Equations with Squares and Cubes

8 M1 Lesson 1: Large and Small Positive Numbers
8 M1 Lesson 2: Comparing Large Numbers
8 M1 Lesson 3: Time to Be More Precise-Scientific Notation
8 M1 Lesson 7: Making Sense of the Exponent of 0
8 M1 Lesson 11: Small Positive Numbers in Scientific Notation

8 M1 Lesson 2: Comparing Large Numbers
8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation
8 M1 Lesson 12: Operations with Numbers in Scientific Notation
8 M1 Lesson 13: Applications with Numbers in Scientific Notation
8 M1 Lesson 14: Choosing Units of Measurement
8 M1 Lesson 15: Get to the Point

Expressions and Equations

B. Understand the connections between proportional relationships, lines, and linear equations.

Rhode Island Core Standards
 for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

8.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

8 M4 Lesson 15: Comparing Proportional Relationships
 8 M4 Lesson 16: Proportional Relationships and Slope

```
8 M3 Lesson 17: Similar Triangles on a Line
8 M4 Topic C: Linear Equations in Two Variables
8 M4 Lesson 16: Proportional Relationships and Slope
8 M4 Lesson 17: Slopes of Rising Lines
8 M4 Lesson 18: Slopes of Falling Lines
8 M4 Lesson 19: Using Coordinates to Find Slope
8 M4 Topic F: Graphing and Writing Linear Equations
```


Expressions and Equations

C. Analyze and solve linear equations and pairs of simultaneous linear equations.

Rhode Island Core Standards
for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

8.EE.C. 7

Solve linear equations in one variable.

```
8 M4 Lesson 2: Solving Linear Equations
8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients
8 M4 Lesson 4: Using Linear Equations to Solve Problems
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip
```


Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.EE.C.7.a

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a$, $a=a$, or $a=b$ results (where a and b are different numbers).

8.EE.C.7.b

Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations.

8 M4 Lesson 7: Linear Equations with More Than One Solution
8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 9: Writing Linear Equations
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems

8 M4 Lesson 1: Equations

8 M4 Lesson 2: Solving Linear Equations
8 M4 Lesson 3: Solving Linear Equations with Rational Coefficients
8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2
8 M4 Lesson 7: Linear Equations with More Than One Solution
8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip

This standard is fully addressed by the lessons aligned to its subsections.

Rhode Island Core Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.EE.C.8.a

Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

8.EE.C.8.b

Solve systems of two linear equations in two variables algebraically (using substitution and elimination strategies), and estimate solutions by graphing the equations. Solve simple cases by inspection.

8 M5 Lesson 1: Solving Problems with Equations and Their Graphs
8 M5 Lesson 3: Identifying Solutions
8 M5 Lesson 4: More Than One Solution
8 M5 Lesson 5: Estimating Solutions
8 M5 Topic B: Solving Systems of Equations Algebraically
8 M5 Topic C: Writing and Solving Systems of Linear Equations
A1 M2 Lesson 9: A New Way to Solve Systems
A1 M2 Lesson 10: The Elimination Method
A1 M2 Lesson 11: Applications of Systems of Equations
8 M5 Lesson 1: Solving Problems with Equations and Their Graphs
8 M5 Topic C: Writing and Solving Systems of Linear Equations

Functions

A. Define, evaluate, and compare functions.

Rhode Island Core Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.F.A. 1

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
8.F.A. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)

8 M6 Lesson 1: Motion and Speed
8 M6 Lesson 2: Definition of a Function
8 M6 Lesson 4: More Examples of Functions
8 M6 Lesson 5: Graphs of Functions and Equations

8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 8: Comparing Functions

8 M6 Lesson 3: Linear Functions and Proportionality
8 M6 Lesson 6: Linear Functions and Rate of Change
8 M6 Lesson 10: Graphs of Nonlinear Functions

Functions

B. Use functions to model relationships between quantities.

Rhode Island Core Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.B. 5

Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally

8 M6 Lesson 6: Linear Functions and Rate of Change
8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 25: Applications of Volume

8 M6 Lesson 9: Increasing and Decreasing Functions
8 M6 Lesson 10: Graphs of Nonlinear Functions

Geometry

A. Understand congruence and similarity using physical models, transparencies, or geometry software.

Rhode Island Core Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.G.A.1 Verify experimentally the properties of rotations, reflections, and translations:	This standard is fully addressed by the lessons aligned to its subsections.
8.G.A.1.a	8 M 2 Lesson 1: Motions of the Plane
Lines are transformed to lines, and line segments to line segments of the same length.	8 M 2 Lesson 2: Translations 8 M 2 Lesson 3: Reflections 8 M 2 Lesson 5: Rotations
8 M 2 Lesson 7: Working Backward	
8.G.A.1.b	8 M 2 Lesson 8: Sequencing the Rigid Motions

Rhode Island Core Standards
 for Mathematics

Aligned Components of Eureka Math²

8.G.A.1.C

Parallel lines are transformed to parallel lines.

8.G.A. 2

Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Given two congruent figures, describe a sequence that exhibits the congruence between them.

8.G.A. 3

Describe the effects of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

8 M2 Lesson 1: Motions of the Plane
8 M2 Lesson 2: Translations
8 M2 Lesson 3: Reflections
8 M2 Lesson 5: Rotations
8 M2 Lesson 7: Working Backward
8 M2 Lesson 8: Sequencing the Rigid Motions
8 M2 Topic B: Rigid Motions and Congruent Figures
8 M2 Lesson 12: Lines Cut by a Transversal

8 M2 Lesson 4: Translations and Reflections on the Coordinate Plane
8 M2 Lesson 6: Rotations on the Coordinate Plane
8 M2 Lesson 9: Ordering Sequences of Rigid Motions
8 M3 Topic A: Dilations
8 M3 Topic B: Properties of Dilations
8 M3 Lesson 9: Describing Dilations
8 M3 Lesson 10: Sequencing Transformations
8 M3 Lesson 16: Similar Right Triangles

Rhode Island Core Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.G.A. 4

Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

8.G.A. 5

Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

```
8 M3 Lesson 11: Similar Figures
8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 17: Similar Triangles on a Line
```

8 M2 Topic C: Angle Relationships
8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
8 M3 Lesson 15: Applications of Similar Figures
8 M3 Lesson 16: Similar Right Triangles

Geometry

B. Understand and apply the Pythagorean Theorem.

Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.G.B.6.a

Understand the relationship among the sides of a right triangle.

8 M2 Lesson 17: Proving the Pythagorean Theorem
8 M2 Lesson 18: Proving the Converse of the Pythagorean Theorem
8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse

Rhode Island Core Standards
 for Mathematics

Aligned Components of Eureka Math²

8.G.B.6.b	8 M2 Lesson 17: Proving the Pythagorean Theorem
Analyze and justify the Pythagorean	8 M2 Lesson 18: Proving the Converse of the Pythagorean Theorem
Theorem and its converse using pictures, diagrams, narratives, or models.	8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
8.G.B. 7	8 M1 Lesson 18: The Pythagorean Theorem
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	8 M1 Lesson 19: Using the Pythagorean Theorem
	8 M1 Lesson 20: Square Roots
	8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
	8 M2 Lesson 21: Applying the Pythagorean Theorem
	8 M2 Lesson 22: On the Right Path
	8 M3 Lesson 16: Similar Right Triangles
8.G.B. 8	8 M2 Lesson 20: Distance in the Coordinate Plane
Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	8 M2 Lesson 22: On the Right Path

Geometry

C. Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Rhode Island Core Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

8.G.C. 9

8 M6 Topic E: Volume
Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve real-world and mathematical problems.

Statistics and Probability

A. Investigate patterns of association in bivariate data.

Rhode Island Core Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

8.SP.A. 1

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

8 M6 Lesson 11: Scatter Plots
8 M6 Lesson 12: Patterns in Scatter Plots

8.SP.A. 2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept

8 M6 Lesson 13: Informally Fitting a Line to Data
8 M6 Lesson 15: Linear Models
8 M6 Lesson 16: Using the Investigative Process
8 M6 Lesson 17: Analyzing the Model

8 M6 Lesson 6: Linear Functions and Rate of Change

8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
8 M6 Lesson 14: Determining an Equation of a Line Fit to Data
8 M6 Lesson 15: Linear Models
8 M6 Lesson 16: Using the Investigative Process
8 M6 Lesson 17: Analyzing the Model

Rhode Island Core Standards
 for Mathematics

8.SP.A. 4

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

8 M6 Topic D: Bivariate Categorical Data

