EUREKA MATH²...

Algebra I | Indiana Academic Standards for Mathematics Correlation to *Eureka Math*^{2™}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2TM}, a groundbreaking new curriculum that helps teachers deliver *exponentially better* math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity. **Process Standards for Mathematics**

PS.1: Make sense of problems and persevere in solving them. Lessons in every module engage students in mathematical practice. These are noted Mathematically proficient students start by explaining to themselves the meaning of a problem in margin boxes included with every lesson. and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole. Lessons in every module engage students PS.2: Reason abstractly and quantitatively. in mathematical practice. These are noted Mathematically proficient students make sense of quantities and their relationships in problem in margin boxes included with every lesson. situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Aligned Components of Eureka Math²

Process Standards for Mathematics

Aligned Components of *Eureka Math*²

PS.3: Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students
Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.	in mathematical practice. These are noted in margin boxes included with every lesson.
PS.4: Model with mathematics. Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.	Lessons in every module engage students in mathematical practice. These are noted in margin boxes included with every lesson.

Process Standards for Mathematics

Process Standards for Mathematics	Aligned Components of Eureka Math ²
PS.5: Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication, and problem solving.	Lessons in every module engage students in mathematical practice. These are noted in margin boxes included with every lesson.
PS.6: Attend to precision. Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.	Lessons in every module engage students in mathematical practice. These are noted in margin boxes included with every lesson.
PS.7: Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.	Lessons in every module engage students in mathematical practice. These are noted in margin boxes included with every lesson.

Process Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
PS.8: Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the	Lessons in every module engage students in mathematical practice. These are noted in margin boxes included with every lesson.

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Data Analysis and Statistics	AI.DS.1 Understand statistics as a process for making inferences about a population based on a random sample from that population. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.	Supplemental material is necessary to address this standard.
	AI.DS.2 Understand that statistics and data are non-neutral and designed to serve a particular interest. Analyze the possibilities for whose interest might be served and how the representations might be misleading.	Supplemental material is necessary to address this standard.

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.DS.3	A1 M2 Lesson 15: Relationships Between Quantitative Variables
	Use technology to find a linear	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
	function that models a relationship	A1 M2 Lesson 17: Modeling Relationships with a Line
	to make predictions, and interpret	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	the slope and y-intercept. Using	A1 M2 Lesson 20: Interpreting Correlation
	technology, compute and interpret	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
	the conclusion coefficient.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
		A1 M4 Lesson 26: Modeling Data with Quadratic Functions
		A1 M4 Lesson 27: Search and Rescue Helicopter
		A1 M6 Topic A: Modeling Bivariate Quantitative Data
	AI.DS.4	A1 M2 Lesson 20: Interpreting Correlation
	Describe the differences between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
	AI.DS.5	A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables
	Summarize bivariate categorical	A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables
	data in two-way frequency tables. Interpret relative frequencies in the contexts of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in data.	A1 M2 Lesson 24: Conditional Relative Frequencies and Association

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Number Systems and Expressions	AI.NE.1 Explain the hierarchy and relationships of numbers and sets of numbers within the complex number system. Know that there is an imaginary number, <i>i</i> , such that $\sqrt{-1} = i$. Understand that the imaginary numbers along with the real numbers form the complex number system.	Supplemental material is necessary to address this standard.
	AI.NE. 2 Simplify algebraic rational expressions, with numerators and denominators containing monomial bases with integer exponents, to equivalent forms.	8 M1 Topic B: Properties and Definitions of Exponents
	AI.NE.3 Simplify square roots of monomial algebraic expressions, including non-perfect squares.	Supplemental material is necessary to address this standard.

Strands	Indiana Academic Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
	AI.NE.4	A1 M1 Lesson 1: The Growing Pattern of Ducks
	Factor quadratic expressions	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
	(including the difference of two	A1 M1 Lesson 3: Polynomial Expressions
	and other quadratic expressions).	A1 M4 Lesson 3: Analyzing Functions that Model Projectile Motion
		A1 M4 Topic B: Factoring
		A1 M4 Lesson 14: Solving Equations by Completing the Square
		A1 M4 Lesson 15: Deriving the Quadratic Formula
		A1 M5 Lesson 11: Graphing Exponential Functions
		A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations	
	AI.NE.5	A1 M1 Lesson 3: Polynomial Expressions
Add, subtract, and mu	Add, subtract, and multiply	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
	polynomials. Divide polynomials	A1 M1 Lesson 5: Multiplying Polynomial Expressions
by mo	by monomials.	A1 M1 Lesson 6: Polynomial Identities

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Functions	AI.F.1	A1 M3 Topic A: Functions and their Graphs
	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. Understand that if f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . Understand the graph of f is the graph of the equation $y = f(x)$ with points of the form $(x, f(x))$.	
	AI.F.2	A1 M3 Lesson 1: The Definition of a Function
	Evaluate functions for given	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
	elements of its domain, and interpret	A1 M3 Lesson 6: Representation of Functions
	in terms of a context.	A1 M3 Lesson 16: Step Functions
		A1 M5 Lesson 1: Exploring Patterns
		A1 M5 Lesson 2: The Recursive Challenge Problem
		A1 M5 Lesson 3: Recursive Formulas for Sequences
		A1 M5 Lesson 4: Explicit Formulas for Sequences
		A1 M5 Lesson 7: Sierpinski Triangle

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.F.3	A1 M3 Lesson 3: The Graph of a Function
	Identify the domain and range	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	of relations represented in tables,	A1 M3 Lesson 16: Step Functions
	equations.	A1 M4 Lesson 2: Projectile Motion
		A1 M4 Lesson 3: Analyzing Functions that Model Projectile Motion
		A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	AI.F.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
	Describe, qualitatively, the functional	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
	relationship between two quantities by analyzing key features of a graph. Sketch a graph that exhibits given key features of a function that has	A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
		A1 M3 Lesson 11: Comparing Functions
		A1 M3 Lesson 12: Mars Curiosity Rover
	intercepts, where the function	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	is increasing or decreasing, where the function is positive or negative, and any relative maximum or minimum values. Identify the independent and	A1 M4 Lesson 1: Falling Objects
		A1 M4 Lesson 2: Projectile Motion
		A1 M4 Lesson 3: Analyzing Functions that Model Projectile Motion
	dependent variables.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
		A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
		A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
		A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
		A1 M4 Lesson 25: Maximizing Area

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Linear Equations, Inequalities, and FunctionsAI.L.1 	AI.L.1 Represent real-world problems using linear equations and inequalities in one variable, including those with rational number coefficients and variables on both sides of the equal sign. Solve them fluently, explaining	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 15: Solving Linear inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M1 Lesson 16: Solving Absolute Value Equations A1 M1 Lesson 17: Solving Absolute Value Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable	
	AI.L.2 Solve compound linear inequalities in one variable, and represent and interpret the solution on a number line. Write a compound linear inequality given its number line representation.	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M1 Lesson 16: Solving Absolute Value Equations A1 M1 Lesson 17: Solving Absolute Value Inequalities

Strands	Indiana Academic Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
	AI.L.3	A1 M5 Lesson 8: Exponential Functions
Represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and 	A1 M5 Lesson 14: Creating Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Lesson 4: The Deal A1 M6 Lesson 6: Designing a Fundraiser A1 M6 Lesson 7: World Record Donut	
	AI.L.4 Represent real-world problems that can be modeled with a linear function using equations, graphs, and tables; translate fluently among these representations, and interpret the slope and intercepts.	8 M6 Lesson 6: Linear Functions and Rate of Change 8 M6 Lesson 7: Interpreting Rate of Change and Initial Value 8 M6 Lesson 25: Applications of Volume
	AI.L.5 Translate among equivalent forms of equations for linear functions, including slope-intercept, point-slope, and standard. Recognize that different forms reveal more or less information about a given situation.	Supplemental material is necessary to address this standard.

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.L.6	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
	Represent real-world problems using	A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
	linear inequalities in two variables	A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
	the solution set and determine	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
	whether it is reasonable. Graph the	A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
	solutions to a linear inequality in two variables as a half-plane.	A1 M6 Lesson 5: Solar Systems Models
	AI.L.7	A1 M1 Lesson 7: Printing Presses
	Solve linear and quadratic equations	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	and formulas for a specified variable	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	using the same reasoning as in solving equations.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
		A1 M1 Lesson 12: Rearranging Formulas
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable	
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities	
	A1 M1 Lesson 16: Solving Absolute Value Equations	
		A1 M1 Lesson 17: Solving Absolute Value Inequalities
		A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Systems of Linear Equations and Inequalities	AI.SEI.1 Understand the relationship between a solution of a system of two linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are non-integer numbers.	A1 M2 Lesson 7: Low Flow Showerhead A1 M2 Lesson 8: Systems of Linear Equations in Two Variables A1 M2 Lesson 9: A New Way to Solve Systems A1 M2 Lesson 10: The Elimination Method A1 M2 Lesson 10: The Elimination of Systems of Equations A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 24: Another Look at Systems of Equations A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
	AI.SEI.2 Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using elimination and substitution methods.	A1 M2 Lesson 9: A New Way to Solve Systems

Strands	Indiana Academic Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
	AI.SEI.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	Write a system of two linear	A1 M1 Lesson 14: Solution Sets of Compound Statements
	equations in two variables that	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	solve the problem with and without	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	technology. Interpret the solution	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
	and determine whether the solution	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
		A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
		A1 M2 Lesson 7: Low Flow Showerhead
		A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
		A1 M2 Lesson 9: A New Way to Solve Systems
		A1 M2 Lesson 10: The Elimination Method
		A1 M2 Lesson 11: Applications of Systems of Equations
		A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
		A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
		A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
		A1 M4 Lesson 25: Maximizing Area
		A1 M4 Lesson 26: Modeling Data with Quadratic Functions
		A1 M4 Lesson 27: Search and Rescue Helicopter
		A1 M6 Lesson 5: Solar Systems Models

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.SEI.4	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	Represent real-world problems using	A1 M1 Lesson 14: Solution Sets of Compound Statements
	a system of two linear inequalities	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	set to a system of linear inequalities	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	in two variables as the intersection of the corresponding half-planes with and without technology. Interpret the solution set and determine whether it is reasonable.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
		A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
		A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
		A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
		A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
		A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
		A1 M6 Lesson 5: Solar System Models

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
Quadratic and Exponential Equations and Functions	AI.QE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. Understand that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Compare linear functions and exponential functions that model real-world situations using tables, graphs, and equations.	A1 M3 Lesson 11: Comparing Functions A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M5 Lesson 15: Calculating Interest A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 21: World Population Prediction A1 M5 Lesson 22: A Closer Look at Populations A1 M5 Lesson 24: Modeling an Invasive Species Population A1 M6 Topic A: Modeling Bivariate Quantitative Data

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.QE.2	A1 M1 Lesson 7: Printing Presses
	Represent real-world and other	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	mathematical problems that can	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	functions using tables, graphs, and	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	equations of the form $y = ab^x$ (for	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	integer values of $x > 1$, rational	A1 M5 Lesson 8: Exponential Functions
	without technology; interpret the	A1 M5 Lesson 14: Creating Equations for Exponential Functions from Tables or Graphs
	values of <i>a</i> and <i>b</i> .	A1 M5 Lesson 16: Exponential Growth
		A1 M5 Lesson 17: Exponential Decay
		A1 M5 Lesson 18: Modeling Populations
		A1 M5 Lesson 19: Analyzing Exponential Growth
		A1 M5 Topic D: Comparing Linear and Exponential Models
		A1 M6 Lesson 4: The Deal
		A1 M6 Lesson 6: Designing a Fundraiser
		A1 M6 Lesson 7: World Record Donut
	AI.QE.3	A1 M4 Lesson 14: Solving Equations by Completing the Square
	Use area models to develop the concept of completing the square to solve quadratic equations. Explore the relationship between completing the square and the quadratic formula.	A1 M4 Lesson 15: Deriving the Quadratic Formula

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.QE.4	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
	Solve quadratic equations in one variable by inspection (e.g., for	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
	$x^2 = 49$), finding square roots, using	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
	as appropriate to the initial form of the equation.	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
		A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
		A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
		A1 M4 Lesson 14: Solving Equations by Completing the Square
		A1 M4 Lesson 15: Deriving the Quadratic Formula
		A1 M4 Lesson 16: Solving Quadratic Equations
		A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Strands	Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math ²
	AI.QE.5	A1 M1 Lesson 7: Printing Presses
	Represent real-world problems using	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	quadratic equations in one or two	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	with technology. Interpret the	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	solution(s) and determine whether	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
	they are reasonable.	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
		A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
		A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
		A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
		A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
		A1 M4 Lesson 14: Solving Equations by Completing the Square
		A1 M4 Lesson 15: Deriving the Quadratic Formula
		A1 M4 Lesson 16: Solving Quadratic Equations
		A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Strands	Indiana Academic Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
	AI.QE.6	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
	Graph exponential and quadratic functions with and without	A1 M3 Lesson 5: Use Pseudocode to Compare Graphs of Functions and Graphs of Equations
	technology. Identify and describe	A1 M3 Lesson 6: Representation of Functions
	lines of symmetry, and extreme	A1 M4 Lesson 4: Graphs of Quadratic Functions
	values in real-world and other	A1 M4 Lesson 10: Zeros of Functions
	quadratic functions with and without	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	technology; interpret the results	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	in the real-world contexts.	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
		A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
		A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
		A1 M5 Lesson 11: Graphing Exponential Functions
		A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
		A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Strands	Indiana Academic Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
	AI.QE.7	A1 M4 Lesson 10: Zeros of Functions
	Describe the relationships among a solution of a quadratic equation, a zero of the function, an <i>x</i> -intercept of the graph, and the factors of the expression. Explain that every quadratic has two complex solutions, which may or may not be real solutions.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions