Algebra I | Arkansas Mathematics Standards Correlation to Eureka Math®

About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, *Eureka Math*[®] helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus–a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of *Eureka Math* aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u>.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at <u>greatminds.org/</u><u>math/curriculum</u>.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

A1 | Arkansas Mathematics Standards Correlation to Eureka Math

Standards for Mathematical Practice	Aligned Components of Eureka Math
MP.1 Make sense of problems and persevere in solving them. MP.2	Lessons in every module engage students in mathematical practices. These are designated in the Module Overview and labeled in lessons. For example:
Reason abstractly and quantitatively.	A STORY OF FUNCTIONS LESSOTT O VIA
MP.3	Problem Set Sample Solutions
Construct viable arguments and critique the reasoning of others.	 Khaya stated that every y-value of the graph of a quadratic function has two different x-values. Do you agree or disagree with Khaya? Explain your answer.
MP.4	MP.3 The graph of a quadratic function has two different x-values for each y-value except at the vertex where there is only one.
Model with mathematics.	 Is it possible for the graphs of two <i>different</i> quadratic functions to each have x = -3 as its line of symmetry and both have a maximum at y = 5? Explain and support your answer with a sketch of the graphs.
MP.5	Students should sketch two graphs with vertex at $(-3,5)$ and different x-intercepts.
Use appropriate tools strategically.	
MP.6	
Attend to precision.	
MP.7	
Look for and make use of structure.	
MP.8	
Look for and express regularity in repeated reasoning.	

Expressions

Polynomials, Roots, & Exponent Laws Students simplify algebraic and numerical expressions.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.EX.1	Algebra I M1 Lesson 8: Adding and Subtracting Polynomials
Add, subtract, and multiply polynomials;	Algebra I M1 Lesson 9: Multiplying Polynomials
compare the system of polynomials	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
performing operations.	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
A1.EX.2	G8 M7 Lesson 4: Simplifying Square Roots
Simplify and perform operations with	Algebra II M1 Lesson 9: Radicals and Conjugates
radical expressions without variables; rationalizing denominators should not	Supplemental material is necessary to address rationalizing denominators without the use
include conjugates.	of conjugates.
A1.EX.3	Algebra II M3 Lesson 1: Integer Exponents
Simplify algebraic expressions using the laws of exponents.	Algebra II M3 Lesson 2: Base 10 and Scientific Notation
	Algebra II M3 Lesson 3: Rational Exponents
	Algebra II M3 Lesson 4: Properties of Exponents and Radicals
A1.EX.4	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
Interpret the parts of expressions such as terms, factors, and coefficients in terms of a real-world context.	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions

Functions

Domain & Range, Function Notation

Students understand the concept of a function, domain and range, and use function notation; students use function notation to solve problems.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.FN.1 Explain that a function assigns each element in the domain to exactly one element in the range.	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 11: The Graph of a Function Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
A1.FN.2 Use function notation to represent functions, understanding that if f is a function and x is an element of its domain, then $f(x)$ represents the output of f corresponding to the input x .	Algebra I M3 Topic A: Linear and Exponential Sequences Algebra I M3 Lesson 8: Why Stay with Whole Numbers? Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 11: The Graph of a Function
A1.FN.3 Graph functions given in function notation, understanding that the graph contains the points $(x, f(x))$.	Algebra I M3 Lesson 1: Integer Sequences–Should You Believe in Patterns? Algebra I M3 Lesson 11: The Graph of a Function Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$ Algebra I M3 Lesson 13: Interpreting the Graph of a Function Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M3 Lesson 23: Newton's Law of Cooling Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.FN.4	Algebra I M3 Topic A: Linear and Exponential Sequences
Evaluate functions expressed in function notation for one or more elements in their domains (inputs); use function notation to describe a contextual situation.	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 11: The Graph of a Function
	Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Topic B: Completing the Modeling Cycle

Functions

Construct & Compare Students construct and compare linear, quadratic, and exponential models and solve problems.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.FN.5	Algebra I M3 Lesson 5: The Power of Exponential Growth
Differentiate between real-world scenarios that can be modeled by exponential or linear functions by determining whether the relationship has a common difference or a	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
common ratio.	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.FN.6	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
Compare the growth pattern	Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services?
of exponential to linear or quadratic	Algebra I M3 Lesson 5: The Power of Exponential Growth
recognize how exponential growth	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
exceeds other functions.	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Create & Solve

Students create and solve equations that model linear relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.1 Represent and solve real-world	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"
problems, using linear expressions, equations, and inequalities in one variable.	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
	Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra
	Supplemental material is necessary to address solving real-world problems using linear inequalities in one variable.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.2	Algebra I M3 Lesson 1: Integer Sequences—Should You Believe in Patterns?
Construct linear functions from	Algebra I M3 Lesson 2: Recursive Formulas for Sequences
arithmetic sequences with and	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
without context.	Algebra I M5 Lesson 5: Modeling from a Sequence
A1.LFE.3	Algebra I M1 Lesson 19: Rearranging Formulas
Solve linear formulas for a specified variable.	
A1.LFE.4	Algebra I M1 Lesson 10: True and False Equations
Solve linear equations, linear inequalities,	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities
and absolute value equations in one	Algebra I M1 Lesson 12: Solving Equations
number coefficients, and variables	Algebra I M1 Lesson 13: Some Potential Dangers when Solving Equations
on both sides of the equal or inequality	Algebra I M1 Lesson 14: Solving Inequalities
sign; solve them fluently, explaining the process used.	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"
	Algebra I M1 Lesson 16: Solving and Graphing Inequalities Joined by "And" or "Or"
	Algebra I M1 Lesson 17: Equations Involving Factored Expressions
	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
	Algebra I M1 Lesson 19: Rearranging Formulas
	Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra
	Supplemental material is necessary to address solving absolute value equations in one variable.

Interpret Key Features

Students interpret key features of equations that model linear relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.5	Algebra I M3 Lesson 11: The Graph of a Function
Determine the domain and range	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
of linear functions in mathematical problems.	Supplemental material is necessary to fully address this standard.
A1.LFE.6	Supplemental material is necessary to address this standard.
Determine reasonable domain and range values of linear functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.	
A1.LFE.7	Algebra I M3 Lesson 13: Interpreting the Graph of a Function
Interpret the key features of a linear and absolute value functions that models a relationship between two quantities in a given context.	Algebra I M3 Lesson 14: Linear and Exponential Models—Comparing Growth Rates
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Supplemental material is necessary to address interpreting the key features of absolute value functions in a given context.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.8	G8 M6 Lesson 1: Modeling Linear Relationships
Flexibly use different representations	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
of a linear function, including graphs,	G8 M6 Lesson 3: Representations of a Line
tables, and equations.	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
	Algebra I M3 Lesson 11: The Graph of a Function
	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
A1.LFE.9	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value
Calculate and interpret the rate	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
of change of a linear function	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
represented in a table, graph, or as an equation in context of real-world and mathematical problems.	Algebra I M5 Lesson 4: Modeling a Context from a Graph
A1.LFE.10	G8 M4 Lesson 12: Linear Equations in Two Variables
Translate among equivalent forms	G8 M4 Lesson 17: The Line Joining Two Distinct Points of the Graph $y = mx + b$ Has Slope m
of equations for linear functions, including standard, point-slope, and slope-intercept forms: recognize that	G8 M4 Lesson 20: Every Line Is a Graph of a Linear Equation
	G8 M4 Lesson 21: Some Facts About Graphs of Linear Equations in Two Variables
each form reveals key features in a given context.	G8 M4 Lesson 23: The Defining Equation of a Line

Systems of Equations & Inequalities Students solve systems of equations and inequalities.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.11	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
Solve systems of linear equations	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations
by substitution, elimination, and araphina with and without a real-world	Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations
context; understand that the solutions will be the same regardless of the	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
method for solving.	
A1.LFE.12	Algebra II M1 Lesson 31: Systems of Equations
Solve a system of equations consisting of a linear equation and a quadratic equation in two variables graphically with the assistance of technology.	Algebra II M1 Lesson 32: Graphing Systems of Equations
A1.LFE.13	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
Explain why a solution to the equation $f(x) = g(x)$ is the x-coordinate where the y-coordinate of $f(x)$ and $g(x)$ are the same using graphs, tables, or approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential.	
A1.LFE.14	Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables
Solve linear inequalities and systems	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations
of linear inequalities in two variables by graphing.	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities

Graphing & Transformations

Students graph linear functions, equations, and inequalities.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

A1.LFE.15	G8 M4 Lesson 5: Writing and Solving Linear Equations
Write linear equations that model the	G8 M4 Lesson 9: An Application of Linear Equations
relationship between two quantities and	G8 M4 Lesson 14: The Graph of a Linear Equation—Horizontal and Vertical Lines
produce a graph of the equation.	G8 M4 Lesson 18: There Is Only One Line Passing Through a Given Point with a Given Slope
	G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line
	G8 M5 Topic A: Functions
	Algebra I M3 Lesson 1: Integer Sequences-Should You Believe in Patterns?
	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description
A1.LFE.16	G8 M4 Lesson 14: The Graph of a Linear Equation—Horizontal and Vertical Lines
Graph linear functions expressed as an	G8 M4 Lesson 18: There Is Only One Line Passing Through a Given Point with a Given Slope
equation and show intercepts of the graph without technology.	G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.17	Algebra I M3 Lesson 15: Piecewise Functions
Graph absolute value functions	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
expressed as an equation with and	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
and end behavior.	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
A1.LFE.18	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Graph and generalize the effect	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
of transformations on linear and absolute value functions.	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Supplemental material is necessary to address the effect of transformations on linear functions.
A1.LFE.19	Supplemental material is necessary to address this standard.
Given the graph of a linear function, explain the effects of the transformation from the parent function, $y = x$.	

Statistical Relationships

Students explore linear statistical relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.20AlgeWrite linear functions that provide a reasonable fit to data and use them to make predictions, with and without technology; interpret the slope and y-intercept in context.Alge	ebra I M2 Lesson 14: Modeling Relationships with a Line ebra I M2 Lesson 19: Interpreting Correlation ebra I M5 Lesson 7: Modeling a Context from Data

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.LFE.21 Calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.	Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data
A1.LFE.22 Compare and contrast correlation and causation in real-world problems.	Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables

Quadratic Functions & Equations

Create & Solve

Students create and solve equations that model quadratic relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.1	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
Represent and solve real-world problems using quadratic expressions and equations in one variable.	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
	Algebra I M4 Lesson 12: Completing the Square
A1.QFE.2	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
Write quadratic equations with real number solutions that model the relationship between two quantities and produce a graph of the equation.	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.3	This standard is addressed by the lessons aligned to its subsections.
Solve quadratic equations with real number solutions, containing one variable, including those with variables on both sides of the equal sign. Equations should be solved by:	
A1.QFE.3.1	Supplemental material is necessary to address this standard.
Graphing,	
A1.QFE.3.2	Algebra I M4 Lesson 5: The Zero Product Property
Factoring (including perfect square	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
trinomials and difference of squares binomials),	Supplemental material is necessary to address solving equations including perfect square trinomials and difference of squares binomials, as well as solving equations with variables on both sides of the equal sign.
A1.QFE.3.3	Algebra I M4 Lesson 14: Deriving the Quadratic Formula
Using the quadratic formula,	Algebra I M4 Lesson 15: Using the Quadratic Formula
A1.QFE.3.4	Algebra I M4 Lesson 12: Completing the Square
Completing the square, or	Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square
	Supplemental material is necessary to address solving quadratic equations with variables on both sides of the equal sign.
A1.QFE.3.5	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
Taking the square root.	

Quadratic Functions & Equations

Interpret Key Features

Students interpret key features of equations that model quadratic relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.4 Determine the domain and range of quadratic functions in mathematical problems.	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions Supplemental material is necessary to fully address this standard.
A1.QFE.5 Determine reasonable domain and range values of quadratic functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M5 Lesson 4: Modeling a Context from a Graph
A1.QFE.6 Interpret the key features of a quadratic function that models a relationship between two quantities in a given context.	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra I M5 Lesson 7: Modeling a Context from Data

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.7	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
Flexibly use different representations of a quadratic function, including graphs,	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 12: Completing the Square
tables, and equations.	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
A1.QFE.8	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
Explain how each form of a quadratic	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
expression (standard, factored, and	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
attributes, using the different forms	Algebra I M4 Lesson 12: Completing the Square
to interpret quantities in context.	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
A1.QFE.9	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
Use factoring and completing the square	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
to create equivalent forms of quadratic functions to reveal key attributes.	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$

Quadratic Functions & Equations

Graphing & Transformations

Students graph quadratic functions and explore different transformations of $f(x) = x^2$.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.10 Graph quadratic functions given as an equation or in function notation, labeling key attributes, without technology.	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra I M4 Lesson 23: Modeling with Quadratic Functions
A1.QFE.11 Graph and describe the effect of transformations on quadratic functions.	Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
A1.QFE.12 Given the graph of a quadratic function, explain the effects of the transformation from the parent function, $y = x^2$.	Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$

Quadratic Functions & Equations

Statistical Relationships

Students explore quadratic statistical relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.QFE.13	Algebra I M5 Lesson 7: Modeling a Context from Data
Write quadratic functions that provide a reasonable fit to data and use them to make predictions with technology.	

Exponential Functions & Equations

Create & Solve

Students create and solve problems that model exponential relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.EFE.1	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
Represent and solve real-world problems, using exponential equations in one variable.	
A1.EFE.2	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
Represent real-world problems (growth,	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
decay, and compound interest), using	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
exponential equations.	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Topic B: Completing the Modeling Cycle
A1.EFE.3	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
Construct exponential equations	Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services?
from geometric sequences with and	Algebra I M3 Lesson 5: The Power of Exponential Growth
without context.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 7: Exponential Decay
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Exponential Functions & Equations

Interpret Key Features

Students interpret key features of equations that model exponential relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.EFE.4	Algebra I M3 Lesson 1: Integer Sequences–Should You Believe in Patterns?
Determine the domain and range of exponential functions in mathematical problems.	Algebra I M5 Lesson 1: Analyzing a Graph
	Supplemental material is necessary to fully address this standard.
A1.EFE.5	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
Determine reasonable domain and range values of exponential functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.	Supplemental material is necessary to fully address this standard.
A1.EFE.6	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
Interpret the key features	Algebra I M3 Lesson 5: The Power of Exponential Growth
of an exponential function that models a relationship between two quantities in a given context.	Algebra I M3 Lesson 7: Exponential Decay
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.EFE.7	Algebra I M3 Lesson 5: The Power of Exponential Growth
Flexibly use different representations of an exponential function, including	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 7: Exponential Decay
graphs, tables, and equations.	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
A1.EFE.8	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
Interpret the quantities in an	Algebra I M3 Lesson 5: The Power of Exponential Growth
exponential equation in the context of a	Algebra I M3 Lesson 7: Exponential Decay
real-world problem, including growth, decay, and compound interest.	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data

Exponential Functions & Equations

Graphing Students graph exponential functions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math

A1.EFE.9	Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
Graph exponential functions that model real-world problems (growth, decay, and compound interest), showing key attributes.	Algebra I M3 Lesson 5: The Power of Exponential Growth
	Algebra I M3 Lesson 7: Exponential Decay
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data

Exponential Functions & Equations

Statistical Relationships Students explore exponential statistical relationships.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.EFE.10	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
Write exponential functions that provide a reasonable fit to data and use them to make predictions with technology.	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Statistics & Probability

Numerical Data Students summarize and describe distributions.

Aikalisas Mathematics Standarus	Arkansas	Mathematics	Standards
---------------------------------	----------	--------------------	-----------

Aligned Components of Eureka Math

A1.SP.1	Algebra I M2 Lesson 1: Distributions and Their Shapes	
Use box plots and histograms to determine the statistics appropriate to the shape of the data distribution; compare the center and spread of two or more data sets.	Algebra I M2 Topic B: Describing Variability and Comparing Distributions	
A1.SP.2	Algebra I M2 Lesson 2: Describing the Center of a Distribution	

Statistics & Probability

Bivariate Data Students will investigate patterns of association in bivariate data.

Arkansas Mathematics Standards	Aligned Components of Eureka Math
A1.SP.3	Algebra I M2 Topic C: Categorical Data on Two Variables
Summarize data from two categorical variables in a frequency table; interpret relative frequencies in the context of the data, recognizing data trends and associations.	