ABOUT EUREKA MATH

ALIGNED

DATA

FULL SUITE OF RESOURCES

Created by the nonprofit Great Minds, Eureka Math helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Eureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

As a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Arkansas Mathematics Standards Correlation to Eureka Math ${ }^{\text {mm }}$

GRADE 3 MATHEMATICS

The majority of the Grade 3 Arkansas Mathematics Standards are fully covered by the Grade 3 Eureka Math curriculum. The primary area where the Grade 3 Arkansas Mathematics Standards and Grade 3 Eureka Math do not align is in the domain of Number and Operations in Base Ten. Standards from this domain will require the use of Eureka Math content from other grade levels. A detailed analysis of alignment is provided in the table below.

INDICATORS

\square Green indicates that the Arkansas standard is fully addressed in Eureka Math.Yellow indicates that the Arkansas standard may not be completely addressed in Eureka Math.Red indicates that the Arkansas standard is not addressed in Eureka Math.
\square Blue indicates there is a discrepancy between the grade level at which this standard is addressed in the Arkansas standards and in Eureka Math.

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Operations and Algebraic Thinking	Cluster: Represent and solve problems involving multiplication and division	
	AR.Math.Content.3.OA.A. 1 Interpret products of whole numbers (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each)	G3 M1 Topic A: Multiplication and the Meaning of the Factors G3 M1 Topic C: Multiplication Using Units of 2 and 3
	AR.Math.Content.3.OA.A. 2 Interpret whole-number quotients of whole numbers (e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each)	G3 M1 Topic B: Division as an Unknown Factor Problem G3 M1 Topic D: Division Using Units of 2 and 3 G3 M1 Lesson 17: Model the relationship between multiplication and division.
	AR.Math.Content.3.OA.A. 3 Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem)	G3 M1 Topic D: Division Using Units of 2 and 3 G3 M1 Topic F: Distributive Property and Problem Solving Using Units of $2-5$ and 10 G3 M3 Lesson 7: Interpret the unknown in multiplication and division to model and solve problems using units of 6 and 7 . G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems. G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems. G3 M3 Lesson 18: Solve two-step word problems involving all four operations and assess the reasonableness of solutions.

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	AR.Math.Content.3.OA.A. 4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers	G3 M1 Topic D: Division Using Units of 2 and 3 G3 M1 Lesson 17: Model the relationship between multiplication and division. G3 M3 Lesson 3: Multiply and divide with familiar facts using a letter to represent the unknown. G3 M3 Topic B: Multiplication and Division Using Units of 6 and 7 G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems. G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems.
	Cluster: Understand properties of multiplication and the relationship between multiplication and division	
	AR.Math.Content.3.OA.B. 5 Apply properties of operations as strategies to multiply and divide	G3 M1: Properties of Multiplication and Division and Solving Problems with Units of 2-5 and 10 G3 M3: Multiplication and Division with Units of $0,1,6-9$, and Multiples of 10

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	AR.Math.Content.3.OA.B. 6 Understand division as an unknown-factor problem	G3 M1 Topic B: Division as an Unknown Factor Problem G3 M1 Topic D: Division Using Units of 2 and 3 G3 M1 Lesson 17: Model the relationship between multiplication and division. G3 M3 Topic B: Multiplication and Division Using Units of 6 and 7
	Cluster: Multiply and divide within 100	
	AR.Math.Content.3.OA.C. 7 - Using computational fluency, multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations - By the end of Grade 3, automatically (fact fluency) recall all products of two onedigit numbers	G3 M1 Topic E: Multiplication and Division Using Units of 4 G3 M3: Multiplication and Division with Units of 0, 1, 6-9, and Multiples of 10

Domain
 Standards for Mathematical Content
 Aligned Components of Eureka Math

	Cluster: Solve problems involving the four operations, and identify and explain patterns in arithmetic	
	AR.Math.Content.3.OA.D. 8 Solve two-step word problems using the four operations, and be able to: - Represent these problems using equations with a letter standing for unknown quantity - Assess the reasonableness of answers using mental computation and estimation strategies including rounding	G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems. G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems. G3 M3 Lesson 18: Solve two-step word problems involving all four operations and assess the reasonableness of solutions. G3 M3 Lesson 21: Solve two-step word problems involving multiplying single-digit factors and multiples of 10 . G3 M7 Topic A: Solving Word Problems
	AR.Math.Content.3.OA.D. 9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations	G3 M3: Multiplication and Division with Units of 0, 1, 6-9, and Multiples of 10

Domain
 Standards for Mathematical Content
 Aligned Components of Eureka Math

Number and Operations in Base Ten	Cluster: Use place value understanding and properties of operations to perform multi-digit arithmetic	
	AR.Math.Content.3.NBT.A. 1 Use place value understanding to round whole numbers to the nearest 10 or 100	G3 M2 Topic C: Rounding to the Nearest Ten and Hundred G3 M2 Lesson 17: Estimate sums by rounding and apply to solve measurement word problems. G3 M2 Topic E: Two- and Three-Digit Measurement Subtraction Using the Standard Algorithm
	AR.Math.Content.3.NBT.A. 2 Using computational fluency, add and subtract within 1,000 using strategies and algorithms based on place value, properties of operations, and the relationship between addition and subtraction	G3 M2 Lesson 4: Solve word problems involving time intervals within 1 hour by counting backward and forward using the number line and clock. G3 M2 Lesson 5: Solve word problems involving time intervals within 1 hour by adding and subtracting on the number line. G3 M2 Lesson 8: Solve one-step word problems involving metric weights within 100 and estimate to reason about solutions. G3 M2 Lesson 11: Solve mixed word problems involving all four operations with grams, kilograms, liters, and milliliters given in the same units. G3 M2 Topic D: Two- and Three-Digit Measurement Addition Using the Standard Algorithm G3 M2 Topic E: Two- and Three-Digit Measurement Subtraction Using the Standard Algorithm

Domain Standards for Mathematical Content		Aligned Components of Eureka Math
	AR.Math.Content.3.NBT.A. 3 Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations	G3 M3 Topic F: Multiplication of Single-Digit Factors and Multiples of 10
	AR.Math.Content.3.NBT.A. 4 Understand that the four digits of a four-digit number represent amounts of thousands, hundreds, tens, and ones (e.g., 7,706 can be portrayed in a variety of ways according to place value strategies) Understand the following as special cases: - 1,000 can be thought of as a group of ten hundreds-called a thousand - The numbers 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000 refer to one, two, three, four, five, six, seven, eight, or nine thousands	G2 M3 Topic C: Three-Digit Numbers in Unit, Standard, Expanded, and Word Forms G2 M3 Topic D: Modeling Base Ten Numbers Within 1,000 with Money G2 M3 Topic E: Modeling Numbers Within 1,000 with Place Value Disks
	AR.Math.Content.3.NBT.A. 5 Read and write numbers to 10,000 using baseten numerals, number names, and expanded form(s)	G4 M1 Lesson 4: Read and write multi-digit numbers using base ten numerals, number names, and expanded form.

Domain Standards for Mathematical Content		Aligned Components of Eureka Math
	AR.Math.Content.3.NBT.A. 6 Compare two four-digit numbers based on meanings of thousands, hundreds, tens, and ones digits using symbols ($<,>,=$) to record the results of comparisons	G4 M1 Lesson 5: Compare numbers based on meanings of the digits using $>,<$, or $=$ to record the comparison.
Number and OperationsFractions	Cluster: Develop understanding of fractions as numbers	
	AR.Math.Content.3.NF.A. 1 - Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts - Understand a fraction a / b as the quantity formed by a parts of size $1 / b$	G3 M5 Topic B: Unit Fractions and their Relation to the Whole G3 M5 Lesson 12: Specify the corresponding whole when presented with one equal part.

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	AR.Math.Content.3.NF.A. 2 Understand a fraction as a number on the number line; represent fractions on a number line diagram - Represent a fraction $1 / b$ on a number line diagram by defining the interval from o to 1 as the whole and partitioning it into b equal parts - Recognize that each part has size $1 / b$ and that the endpoint of the part based at o locates the number $1 / b$ on the number line - Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from o - Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line	G3 M5 Topic D: Fractions on the Number Line G3 M5 Lesson 30: Partition various wholes precisely into equal parts using a number line method.

Domain Standards for Mathematical Content Aligned Components of Eureka Math

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Measurement and Data	Cluster: Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects	
	AR.Math.Content.3.MD.A. 1 - Tell time using the terms quarter and half as related to the hour (e.g., quarterpast 3:00, half-past 4:00, and quarter till 3:00) - Tell and write time to the nearest minute and measure time intervals in minutes - Solve word problems involving addition and subtraction of time intervals in minutes (e.g., by representing the problem on a number line diagram)	G3 M2 Topic A: Time Measurement and Problem Solving G3 M2 Lesson 12: Round two-digit measurements to the nearest ten on the vertical number line.
	AR.Math.Content.3.MD.A. 2 - Measure and estimate liquid volumes and masses of objects using standard units such as: grams (g), kilograms (kg), liters (l), gallons (gal), quarts (qt), pints (pt), and cups (c) - Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units (e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem)	G3 M2 Topic B: Measuring Weight and Liquid Volume in Metric Units G3 M2 Lesson 12: Round two-digit measurements to the nearest ten on the vertical number line. G3 M2 Lesson 21: Estimate sums and differences of measurements by rounding, and then solve mixed word problems.

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Cluster: Represent and interpret data	
	AR.Math.Content.3.MD.B. 3 - Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories (e.g., Draw a bar graph in which each square in the bar graph might represent 5 pets) - Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled picture graphs and scaled bar graphs	G3 M6: Collecting and Displaying Data
	AR.Math.Content.3.MD.B. 4 - Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch - Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters	G3 M6: Collecting and Displaying Data G3 M7 Lesson 19: Use a line plot to record the number of rectangles constructed from a given number of unit squares. G3 M7 Lesson 22: Use a line plot to record the number of rectangles constructed in Lessons 20 and 21.

Domain	Aligned Components of Eureka Math			
	Cluster: Geometric measurement: understand concepts of area and relate area to multiplication and to addition			
	AR.Math.Content.3.MD.C.5 Recognize area as an attribute of plane figures and understand concepts of area measurement: - A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	G3 M4 Topic A: Foundations for Understanding Area		
- A plane figure, which can be covered				
without gaps or overlaps by n unit				
squares, is said to have an area of n				
square units			\quad	G3 M4 Lesson 6: Draw rows and columns to determine the
:---				
area of a rectangle given an incomplete array.				

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	AR.Math.Content.3.MD.C. 7 Relate area to the operations of multiplication and addition: - Find the area of a rectangle with wholenumber side lengths by tiling it and show that the area is the same as would be found by multiplying the side lengths - Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving realworld and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning - Use tiling to show in a concrete case that the area of a rectangle with wholenumber side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$ - Use area models to represent the distributive property in mathematical reasoning - Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real-world problems	G3 M4: Multiplication and Area

Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Cluster: Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures	
	AR.Math.Content.3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters	G3 M7: Geometry and Measurement Word Problems
Geometry	Cluster: Reason with shapes and their attributes	
	AR.Math.Content.3.G.A. 1 - Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides) and that the shared attributes can define a larger category (e.g., quadrilaterals) - Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories	G3 M7 Topic B: Attributes of Two-Dimensional Figures

Domain Standards for Mathematical Content

	AR.Math.Content.3.G.A.2 •Partition shapes into parts with equal areas •Express the area of each part as a unit fraction of the whole	G3 M5 Topic A: Partitioning a Whole into Equal Parts

