ABOUT EUREKA MATH

ALIGNED

DATA

FULL SUITE OF RESOURCES

Created by the nonprofit Great Minds, Eureka Math helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Eureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

As a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Connecticut Common Core State Standards: Mathematics Correlation to Eureka Math ${ }^{\text {M }}$

INTEGRATED I

Eureka Math does not currently offer an integrated curriculum; however, the Integrated I Connecticut Common Core State Standards: Mathematics are fully covered by the Eureka Math curriculum. Standards from this pathway will require the use of Eureka Math content from multiple high school courses. A detailed analysis of alignment is provided in the table below.

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Number and Quantity	Quantities	Cluster: Reason quantitatively and use units to solve problems.	
		N-Q.A. 1 Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs
		N-Q.A. 2 Define appropriate quantities for the purpose of descriptive modeling.	Algebra I M1 Topic A: Introduction to Functions Studied this Year-Graphing Stories Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lessons 20-21: Modeling Riverbeds with Polynomials Algebra II M3 Lesson 2: Base 10 and Scientific Notation Algebra II M3 Lesson 9: Logarithms-How Many Digits Do You Need?
		N-Q.A. 3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Algebra I M1 Topic A: Introduction to Functions Studied this Year-Graphing Stories Algebra I M5: A Synthesis of Modeling with Equations and Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Algebra	Seeing Structure in Expressions	Cluster: Interpret the structure of expressions.	
		A-SSE.A. 1 Interpret expressions that represent a quantity in terms of its context.	
		a. Interpret parts of an expression, such as terms, factors, and coefficients.	Algebra I M4 Lessons 1-2: Multiplying and Factoring Polynomial Expressions Algebra I M4 Lessons 3-4: Advanced Factoring Strategies for Quadratic Expressions Algebra II M1 Lesson 14: Graphing Factored Polynomials Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
		b. Interpret complicated expressions by viewing one or more of their parts as a single entity.	Algebra I M1 Topic D: Creating Equations to Solve Problems Algebra I M3 Topic A: Linear and Exponential Sequences Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 12: Completing the Square Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x)=a x^{2}+b x+c$ Algebra II M3 Topic D: Using Logarithms in Modeling Situations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Creating Equations	Cluster: Create equations that describe numbers or relationships.	
		A-CED.A. 1 Create equations and inequalities in one variable and use them to solve problems.	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra I M1 Topic D: Creating Equations to Solve Problems Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations Algebra II M3 Lesson 7: Bacteria and Exponential Growth Algebra II M3 Lesson 26: Percent Rate of Change Algebra II M3 Lesson 27: Modeling with Exponential Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		A-CED.A. 2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Algebra I M1 Lesson 5: Two Graphing Stories Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities Algebra I M1 Lesson 28: Federal Income Tax Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x)=a(x-m)(x-n)$ Algebra I M4 Lesson 12: Completing the Square Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y=a(x-h)^{2}+k$ Algebra I M4 Lessons 23-24: Modeling with Quadratic Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lesson 1: Successive Differences in Polynomials Algebra II M1 Lessons 16-17: Modeling with Polynomials-An Introduction Algebra II M1 Lessons 20-21: Modeling Riverbeds with Polynomials Algebra II M2 Lesson 12: Ferris Wheels-Using Trigonometric Functions to Model Cyclical Behavior Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		A-CED.A. 3 Represent constraints by equations or inequalities, and by systems of equations and/ or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or" Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities Algebra I M1 Lesson 27: Recursive Challenge Problem-The Double and Add 5 Game Algebra I M3 Topic B: Functions and Their Graphs Algebra I M3 Lesson 24: Piecewise and Step Functions in Context Algebra II M1 Lessons 20-21: Modeling Riverbeds with Polynomials Algebra II M3 Topic E: Geometric Series and Finance
		A-CED.A. 4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	Algebra I M1 Lesson 19: Rearranging Formulas

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Reasoning with Equations and Inequalities	Cluster: Understand solving equations as a process of reasoning and explain the reasoning.	
		A-REI.A. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Algebra I M1 Lesson 12: Solving Equations Algebra I M1 Lesson 13: Some Potential Dangers when Solving Equations Algebra I M1 Lesson 17: Equations Involving Factored Expressions Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra II M1 Lesson 28: A Focus on Square Roots
		Cluster: Solve equations an	qualities in one variable.
		A-REI.B. 3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Algebra I M1: Relationships Between Quantities and Reasoning with Equations and Their Graphs
		Cluster: Solve systems of eq	ons.
		A-REI.C. 5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		A-REI.D. 12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
Functions	Interpreting Functions	Cluster: Understand the concept of a function and use function notation.	
		F-IF.A. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	Algebra I M3 Lesson 1: Integer Sequences-Should You Believe in Patterns? Algebra I M3 Lesson 12: The Graph of the Equation $y=f(x)$
		F-IF.A. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Algebra I M3: Linear and Exponential Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		F-IF.A.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	Algebra I M3 Lesson 2: Recursive Formulas for Sequences Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services? Algebra II M3 Lesson 26: Percent Rate of Change

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Interpret functions that arise in applications in terms of the context.	
		F-IF.B. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.	Algebra I M3 Lesson 13: Interpreting the Graph of a Function Algebra I M3 Lesson 14: Linear and Exponential ModelsComparing Growth Rates Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x)=a(x-m)(x-n)$ Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x)=a x^{2}+b x+c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lessons 16-17: Modeling with Polynomials-An Introduction Algebra II M2 Lesson 12: Ferris Wheels-Using Trigonometric Functions to Model Cyclical Behavior Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	Algebra I M3 Topic B: Functions and Their Graphs Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x)=a(x-m)(x-n)$ Algebra I M5 Lesson 1: Analyzing a Graph Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra II M1 Lessons 16-17: Modeling with Polynomials-An Introduction Algebra II M3 Lesson 17: Graphing the Logarithm Function
		F-IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Algebra I M3 Lesson 6: Exponential Growth-U.S. Population and World Population Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x)=a x^{2}+b x+c$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra II M3 Lesson 6: Euler's Number, e Algebra II M3 Lesson 27: Modeling with Exponential Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Analyze functions using different representations.	
		F-IF.C. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
		a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	Algebra I M3 Lesson 11: The Graph of a Function Algebra I M3 Lesson 12: The Graph of the Equation $y=f(x)$ Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra I M3 Lesson 19: Four Interesting Transformations of Functions Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x)=a(x-m)(x-n)$ Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y=a(x-h)^{2}+k$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x)=a x^{2}+b x+c$ Algebra I M4 Topic C: Function Transformations and Modeling Algebra II M1 Lesson 14: Graphing Factored Polynomials

Conceptual CategoryDomainStandards for Mathematical Content Aligned Components of Eureka Math

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Building Functions	Cluster: Build a function that models a relationship between two quantities.	
		F-BF.A. 1 Write a function that describes a relationship between two quantities.	
		a. Determine an explicit expression, a recursive process, or steps for calculation from a context.	Algebra I M3: Linear and Exponential Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lesson 1: Successive Differences in Polynomials Algebra II M2 Lesson 12: Ferris Wheels-Using Trigonometric Functions to Model Cyclical Behavior Algebra II M3 Lesson 5: Irrational Exponents-What are $2^{\sqrt{ } 2}$ and 2^{π} ? Algebra II M3 Lesson 6: Euler's Number, e Algebra II M3 Lesson 7: Bacteria and Exponential Growth Algebra II M3 Lesson 22: Choosing a Model Algebra II M3 Lesson 26: Percent Rate of Change Algebra II M3 Lesson 27: Modeling with Exponential Functions
		b. Combine standard function types using arithmetic operations.	Algebra II M2 Lesson 12: Ferris Wheels-Using Trigonometric Functions to Model Cyclical Behavior Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited Algebra II M3 Lesson 30: Buying a Car Algebra II M3 Lesson 33: The Million Dollar Problem Precalculus and Advanced Topics M4 Lesson 6: Waves, Sinusoids, and Identities

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Linear, Quadratic, and Exponential Models	Cluster: Construct and compare linear, quadratic, and exponential models and solve problems.	
		F-LE.A. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.	
		a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	Algebra I M3 Lesson 14: Linear and Exponential ModelsComparing Growth Rates
		b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M5: A Synthesis of Modeling with Equations and Functions
		c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M3 Lesson 7: Exponential Decay Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M3 Lesson 27: Modeling with Exponential Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Geometry	Congruence	Cluster: Experiment with transformations in the plane.	
		G-CO.A. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	Geometry M1 Topic A: Basic Constructions Geometry M1 Topic G: Axiomatic Systems
		G-CO.A. 2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	Geometry M1 Topic C: Transformations/Rigid Motions Geometry M2 Lesson 6: Dilations as Transformations of the Plane
		G-CO.A. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	Geometry M1 Lesson 15: Rotations, Reflections, and Symmetry Geometry M1 Lesson 21: Correspondence and Transformations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Expressing Geometric Properties with Equations	Cluster: Use coordinates to prove simple geometric theorems algebraically.	
		G-GPE.B. 4 Use coordinates to prove simple geometric theorems algebraically.	Geometry M4: Connection Algebra and Geometry Through Coordinates Geometry M5 Lesson 19: Equations for Tangent Lines to Circles
		G-GPE.B. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	Geometry M4 Lesson 4: Designing a Search Robot to Find a Beacon Geometry M4 Topic B: Perpendicular and Parallel Lines in the Cartesian Plane Geometry M5 Lesson 19: Equations for Tangent Lines to Circles
		G-GPE.B. 7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	Geometry M4: Connecting Algebra and Geometry Through Coordinates

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Statistics and Probability	Interpreting Categorical and Quantitative Data	Cluster: Summarize, represent, and interpret data on a single count or measurement variable.	
		S-ID.A. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).	Algebra I M2: Descriptive Statistics
		S-ID.A. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Algebra I M2 Lesson 3: Estimating Centers and Interpreting the Mean as a Balance Point Algebra I M2 Topic B: Describing Variability and Comparing Distributions
		S-ID.A. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	Algebra I M2: Descriptive Statistics

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Summarize, represent, and interpret data on two categorical and quantitative variables.	
		S-ID.B. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	Algebra I M2 Topic C: Categorical Data on Two Variables
		S-ID.B. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	
		a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	Algebra I M2 Lessons 12-13: Relationships Between Two Numerical Variables Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data Algebra II M1 Lessons 20-21: Modeling Riverbeds with Polynomials Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		b. Informally assess the fit of a function by plotting and analyzing residuals.	Algebra I M2 Topic D: Numerical Data on Two Variables
		c. Fit a linear function for a scatter plot that suggests a linear association.	Algebra I M2 Lesson 18: Analyzing Residuals Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data
		Cluster: Interpret linear models.	
		S-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Algebra I M2 Lesson 14: Modeling Relationships with a Line
		S-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data
		S-ID.C. 9 Distinguish between correlation and causation.	Algebra I M2 Lesson 11: Conditional Relative Frequencies and Association Algebra I M2 Lesson 19: Interpreting Correlation Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables

