

Grade 8 | Georgia's K-12 Mathematics Standards Correlation to Eureka Math®

About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, *Eureka Math*[®] helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus–a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of *Eureka Math* aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u>.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at <u>greatminds.org/</u><u>math/curriculum</u>.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

8 | Georgia's K–12 Mathematics Standards Correlation to Eureka Math

Standards for Mathematical Practice	Aligned Components of Eureka Math	
MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are designated in the Module Overview and labeled in lessons.	
MP.2 Reason abstractly and quantitatively.	A STORY OF RATIOS Lesson 1 8-5	
MP.3 Construct viable arguments and critique the reasoning of others.	 Let's make a prediction based on a value of x that is not listed in the table. How far did the stone drop in the first 3.5 seconds? What have we done in the past to figure something like this out? We wrote a proportion using the known times and distances. Allow students time to work with proportions. Encourage them to use more than one pair of data values to determine	
MP.4 Model with mathematics.	an answer. Some students might suggest they cannot use proportions for this work as they have just ascertained that there is not a constant rate of change. Acknowledge this. The work with proportions some students do will indeed confirm this. Sample student work: Let x be the distance in feet, the stone drops in 3.5 seconds	
MP.5 Use appropriate tools strategically.	$\frac{16}{1} = \frac{x}{3.5} \qquad \frac{64}{2} = \frac{x}{3.5} \qquad \frac{144}{3} = \frac{x}{3.5}$ $x = 56 \qquad 2x = 224 \qquad 3x = 504$ $x = 112 \qquad x = 168$	
MP.6 Attend to precision.	 MP.3 Is it reasonable that the stone would drop 56 feet in 3.5 seconds? Explain. No, it is not reasonable. Our data shows that after 2 seconds, the stone has already dropped 64 feet. Therefore, it is impossible that it could have only dropped 56 feet in 3.5 seconds. What about 112 feet in 3.5 seconds? How reasonable is that answer? Explain. The answer of 112 feet in 3.5 seconds is not reasonable either. The data shows that the stone dropped 	
MP.7 Look for and make use of structure.	 144 feet in 3 seconds. What about 168 feet in 3.5 seconds? What do you think about that answer? Explain. That answer is the most likely because at least it is greater than the recorded 144 feet in 3 seconds. What makes you think that the work done with a third proportion will give us a correct answer when the first two did not? Can we rely on this method for determining an answer? 	
MP.8 Look for and express regularity in repeated reasoning.	 This does not seem to be a reliable method. If we had only done one computation and not evaluated the reasonableness of our answer, we would have been wrong. 	

8 | Georgia's K–12 Mathematics Standards Correlation to Eureka Math

Mathematical Modeling Framework	Aligned Components of Eureka Math
MF.1	Lessons in every module engage students in mathematical modeling.
Explore and describe real-life, mathematical situations or problems.	
MF.2	
Gather information, make assumptions, and define variables related to the problem.	
MF.3	
Create a model and arrive at a solution to explain the problem presented.	
MF.4	
Analyze and revise models, as necessary.	
MF.5	
Evaluate the model and interpret solutions generated from other models. Draw and validate conclusions.	

Framework for Statistical Reasoning	Aligned Components of Eureka Math	
SR	Lessons in Module 6 engage students in statistical reasoning.	
Create statistical investigative questions that can be answered using quantitative data. Collect, analyze, and interpret patterns of bivariate data and interpret linear models to answer statistical questions and solve real problems.		
SR.1		
Ask: Create a statistical investigative question that can be answered by gathering data from real situations and determine strategies for gathering data to answer the statistical investigative question.		
SR.2		
Collect: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercepts.		
SR.3		
Analyze: Construct and interpret scatter plots for bivariate quantitative data to investigate patterns of association between two quantities.		
SR.4		
Analyze: Explain the meaning of the predicted slope (rate of change) and the predicted intercept (constant term) of a linear model in the context of the data.		

8 Geor	gia's K–12 N	<i>l</i> athematics	Standards	Correlation	to Eureka	Math
----------	--------------	---------------------	-----------	-------------	-----------	------

Framework for Statistical Reasoning	Aligned Components of Eureka Math	
SR.5 Interpret: Show that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, visually fit a straight line, and informally	Lessons in Module 6 engage students in statistical reasoning.	
assess the model fit by judging the closeness of the data points to the line of best fit.		
SR.6		
Interpret: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercepts.		
SR.7		
Interpret: Use appropriate graphical displays from data distributions involving lines of best fit to draw informal inferences and answer the statistical investigative question posed in an unbiased statistical study.		

Numerical Reasoning-rational and irrational numbers, decimal expansion, integer exponents, square and cube roots, scientific notation

8.NR.1 Solve problems involving irrational numbers and rational approximations of irrational numbers to explain realistic applications.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.NR.1.1	G8 M7 Topic B: Decimal Expansions of Numbers
Distinguish between rational and irrational numbers using decimal expansion. Convert a decimal expansion which repeats eventually into a rational number.	
8.NR.1.2	G8 M7 Lesson 1: The Pythagorean Theorem
Approximate irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions.	 G8 M7 Lesson 2: Square Roots G8 M7 Lesson 3: Existence and Uniqueness of Square Roots and Cube Roots G8 M7 Lesson 4: Simplifying Square Roots G8 M7 Lesson 11: The Decimal Expansion of Some Irrational Numbers G8 M7 Lesson 13: Comparing Irrational Numbers G8 M7 Lesson 14: Decimal Expansion of π

Numerical Reasoning-rational and irrational numbers, decimal expansion, integer exponents, square and cube roots, scientific notation

8.NR.2 Solve problems involving radicals and integer exponents including relevant application situations; apply place value understanding with scientific notation and use scientific notation to explain real phenomena.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.NR.2.1 Apply the properties of integer exponents to generate equivalent numerical expressions.	G8 M1 Topic A: Exponential Notation and Properties of Integer Exponents
8.NR.2.2 Use square root and cube root symbols to represent solutions to equations. Recognize that $x^2 = p$ (where p is a positive rational number and $ x \le 25$) has two solutions and $x^3 = p$ (where p is a negative or positive rational number and $ x \le 10$) has one solution. Evaluate square roots of perfect squares ≤ 625 and cube roots of perfect cubes $\ge -1,000$ and $\le 1,000$.	G8 M7 Lesson 2: Square Roots G8 M7 Lesson 5: Solving Equations with Radicals Supplemental material is necessary to address explicitly recognizing that $x^2 = p$ (where p is a positive rational number and $ x \le 25$) has two solutions and $x^3 = p$ (where p is a negative or positive rational number and $ x \le 10$) has one solution.
8.NR.2.3 Use numbers expressed in scientific notation to estimate very large or very small quantities, and to express how many times as much one is than the other.	G8 M1 Lesson 7: Magnitude G8 M1 Lesson 8: Estimating Quantities

Mathematics Standards	Aligned Components of Eureka Math
8.NR.2.4	G8 M1 Lesson 9: Scientific Notation
Add, subtract, multiply and divide numbers expressed in scientific notation, including problems	G8 M1 Lesson 10: Operations with Numbers in Scientific Notation G8 M1 Lesson 11: Efficacy of Scientific Notation G8 M1 Lesson 12: Choice of Unit
where both decimal and scientific notation are used. Interpret scientific notation that has been generated by technology (e.g., calculators or online technology tools).	G8 M1 Lesson 13: Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology

Patterning & Algebraic Reasoning-expressions, linear equations, and inequalities

8.PAR.3 Create and interpret expressions within relevant situations. Create, interpret, and solve linear equations and linear inequalities in one variable to model and explain real phenomena.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.PAR.3.1	G8 M4 Lesson 1: Writing Equations Using Symbols
Interpret expressions and parts of an expression, in context, by utilizing formulas or expressions with multiple terms and/or factors.	G8 M4 Lesson 5: Writing and Solving Linear Equations G8 M4 Lesson 9: An Application of Linear Equations

Georgia's K–12 Mathematics Standards

Aligned Components of Eureka Math

8.PAR.3.2	G8 M4 Topic A: Writing and Solving Linear Equations
Describe and solve linear equations in one variable with one solution $(x = a)$, infinitely many solutions $(a = a)$, or no solutions $(a = b)$. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).	
8.PAR.3.3	G8 M4 Topic A: Writing and Solving Linear Equations
Create and solve linear equations	Algebra I M1 Lesson 14: Solving Inequalities
and inequalities in one variable within a relevant application.	Algebra I M1 Lesson 16: Solving and Graphing Inequalities Joined by "And" or "Or"
	Supplemental material is necessary to address creating and solving linear inequalities specifically within a relevant application.
8.PAR.3.4	G8 M4 Lesson 4: Solving a Linear Equation
Using algebraic properties and the properties of real numbers, justify	G8 M4 Lesson 8: Linear Equations in Disguise
	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities
or inequality.	Algebra I M1 Lesson 12: Solving Equations
	Algebra I M1 Lesson 14: Solving Inequalities

Mathematics Standards	Aligned Components of Eureka Math
8.PAR.3.5	Algebra I M1 Lesson 19: Rearranging Formulas
Solve linear equations and inequalities in one variable with coefficients represented by letters and explain the solution based on the contextual, mathematical situation.	Supplemental material is necessary to fully address this standard.
8.PAR.3.6	G8 M4 Topic A: Writing and Solving Linear Equations
Use algebraic reasoning to fluently manipulate linear and literal equations expressed in various forms to solve relevant, mathematical problems.	Algebra I M1 Lesson 19: Rearranging Formulas

Georgia's K–12 .

Patterning & Algebraic Reasoning-expressions, linear equations, and inequalities

8.PAR.4 Show and explain the connections between proportional and non-proportional relationships, lines, and linear equations; create and interpret graphical mathematical models and use the graphical, mathematical model to explain real phenomena represented in the graph.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.PAR.4.1	G8 M4 Lesson 16: The Computation of the Slope of a Non-Vertical Line
Use the equation $y = mx$ (proportional) for a line through the origin to derive the equation $y = mx + b$ (non-proportional) for a line intersecting the vertical axis at b .	G8 M4 Lesson 17: The Line Joining Two Distinct Points of the Graph $y = mx + b$ Has Slope m
	G8 M4 Lesson 18: There Is Only One Line Passing Through a Given Point with a Given Slope
	G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line
	G8 M4 Lesson 20: Every Line Is a Graph of a Linear Equation
	G8 M4 Lesson 21: Some Facts About Graphs of a Linear Equation in Two Variables
	G8 M4 Lesson 22: Constant Rates Revisited
	G8 M4 Lesson 23: The Defining Equation of a Line

Mathematics Standards	Aligned Components of Eureka Math
8.PAR.4.2 Show and explain that the graph of an equation representing an applicable situation in two variables is the set of all its solutions plotted in the	G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line G8 M4 Lesson 20: Every Line Is a Graph of a Linear Equation Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
coordinate plane.	

Coordiale K 10

Functional & Graphical Reasoning-relate domain to linear functions, rate of change, linear vs. nonlinear relationships, graphing linear functions, systems of linear equations, parallel and perpendicular lines

8.FGR.5 Describe the properties of functions to define, evaluate, and compare relationships, and use functions and graphs of functions to model and explain real phenomena.

Mathematics Standards	Aligned Components of Eureka Math
8.FGR.5.1	G8 M5 Lesson 1: The Concept of a Function
Show and explain that a function is a rule that assigns to each input exactly one output.	G8 M5 Lesson 2: Formal Definition of a Function G8 M5 Lesson 4: More Examples of Functions
8.FGR.5.2	G8 M5 Lesson 4: More Examples of Functions
Within realistic situations, identify and describe examples of functions that are linear or nonlinear. Sketch a graph that exhibits the qualitative features of a function that has been described verbally.	 G8 M5 Lesson 5: Graphs of Functions and Equations G8 M5 Lesson 8: Graphs of Simple Nonlinear Functions G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value G8 M6 Lesson 3: Representations of a Line G8 M6 Lesson 4: Increasing and Decreasing Functions G8 M6 Lesson 5: Increasing and Decreasing Functions
	G8 M6 Lesson 5: Increasing and Decreasing Functions

Mathematics Standards	Aligned Components of Eureka Math
8.FGR.5.3 Relate the domain of a linear function to its graph and where applicable to the quantitative relationship it describes.	Algebra I M3 Lesson 11: The Graph of a Function Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$ Supplemental material is necessary to fully address this standard.
8.FGR.5.4 Compare properties (rate of change and initial value) of two functions used to model an authentic situation each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	G8 M5 Lesson 7: Comparing Linear Functions and Graphs
8.FGR.5.5 Write and explain the equations y = mx + b (slope-intercept form), Ax + By = C (standard form), and $(y - y_1) = m(x - x_1)$ (point-slope form) as defining a linear function whose graph is a straight line to reveal and explain different properties of the function.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs G8 M4 Topic C: Slope and Equations of Lines
8.FGR.5.6 Write a linear function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	 G8 M4 Lesson 12: Linear Equations in Two Variables G8 M4 Lesson 17: The Line Joining Two Distinct Points of the Graph y = mx + b Has Slope m G8 M4 Lesson 20: Every Line Is a Graph of a Linear Equation G8 M4 Lesson 21: Some Facts About Graphs of Linear Equations in Two Variables G8 M4 Lesson 23: The Defining Equation of a Line

Georgia's K–12 Mathematics Standard

-

Mathematics Standards	Aligned Components of Eureka Math
8.FGR.5.7	G8 M6 Lesson 1: Modeling Linear Relationships
Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph.	G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value G8 M6 Lesson 3: Representations of a Line
8.FGR.5.8 Explain the meaning of the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	 G8 M5 Lesson 3: Linear Functions and Proportionality G8 M5 Lesson 5: Graphs of Functions and Equations G8 M5 Lesson 6: Graphs of Linear Functions and Rate of Change G8 M5 Lesson 7: Comparing Linear Functions and Graphs G8 M6 Lesson 1: Modeling Linear Relationships G8 M6 Lesson 2: Interpreting Rate of Change and Initial Value G8 M6 Lesson 3: Representations of a Line
8.FGR.5.9 Graph and analyze linear functions expressed in various algebraic forms and show key characteristics of the graph to describe applicable situations.	G8 M5 Lesson 7: Comparing Linear Functions and Graphs

Georgia's K–12 Mathematics Standard

Functional & Graphical Reasoning—relate domain to linear functions, rate of change, linear vs. nonlinear relationships, graphing linear functions, systems of linear equations, parallel and perpendicular lines

8.FGR.6 Solve practical, linear problems involving situations using bivariate quantitative data.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.FGR.6.1	G8 M6 Lesson 8: Informally Fitting a Line
Show that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, visually fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line of best fit.	G8 M6 Lesson 9: Determining the Equation of a Line Fit to Data G8 M6 Lesson 11: Using Linear Models in a Data Context
8.FGR.6.2 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercepts.	G8 M6 Lesson 8: Informally Fitting a Line G8 M6 Lesson 9: Determining the Equation of a Line Fit to Data G8 M6 Lesson 11: Using Linear Models in a Data Context
8.FGR.6.3 Explain the meaning of the predicted slope (rate of change) and the predicted intercept (constant term) of a linear model in the context of the data.	G8 M6 Lesson 11: Using Linear Models in a Data Context

Mathematics Standards	Aligned Components of Eureka Math
8.FGR.6.4	G8 M6 Lesson 8: Informally Fitting a Line
Use appropriate graphical displays from data distributions involving lines of best fit to draw informal inferences and answer the statistical investigative question posed in an unbiased statistical study.	G8 M6 Lesson 9: Determining the Equation of a Line Fit to Data G8 M6 Lesson 11: Using Linear Models in a Data Context

Functional & Graphical Reasoning—relate domain to linear functions, rate of change, linear vs. nonlinear relationships, graphing linear functions, systems of linear equations, parallel and perpendicular lines

8.FGR.7 Justify and use various strategies to solve systems of linear equations to model and explain realistic phenomena.

Georgia's K–12 Mathematics Standards	Aligned Components of Eureka Math
8.FGR.7.1	G8 M4 Lesson 24: Introduction to Simultaneous Equations
Interpret and solve relevant mathematical problems leading to two linear equations in two variables.	G8 M4 Lesson 26: Characterization of Parallel Lines G8 M4 Lesson 29: Word Problems G8 M4 Lesson 30: Conversion Between Celsius and Fahrenheit G8 M4 Topic E: Pythagorean Theorem

Aligned Components of Eureka Math
G8 M4 Lesson 25: Geometric Interpretation of the Solutions of a Linear System
G8 M4 Lesson 26: Characterization of Parallel Lines
G8 M4 Lesson 24: Introduction to Simultaneous Equations
G8 M4 Lesson 25: Geometric Interpretation of the Solutions of a Linear System
G8 M4 Lesson 26: Characterization of Parallel Lines
G8 M4 Lesson 27: Nature of Solutions of a System of Linear Equations
G8 M4 Lesson 26: Characterization of Parallel Lines
G8 M4 Lesson 27: Nature of Solutions of a System of Linear Equations
G8 M4 Lesson 28: Another Computational Method of Solving a Linear System
G8 M4 Lesson 29: Word Problems
G8 M4 Lesson 30: Conversion Between Celsius and Fahrenheit
G8 M4 Topic E: Pythagorean Theorem
G8 M4 Lesson 26: Characterization of Parallel Lines
G8 M4 Lesson 27: Nature of Solutions of a System of Linear Equations
Geometry M4 Topic B: Perpendicular and Parallel Lines in the Cartesian Plane

Georgia's K–12 .

Geometric & Spatial Reasoning—Pythagorean theorem and volume of triangles, rectangles, cones, cylinders, and spheres

8.GSR.8 Solve geometric problems involving the Pythagorean Theorem and the volume of geometric figures to explain real phenomena.

Mathematics Standards	Aligned Components of Eureka Math
8.GSR.8.1 Explain a proof of the Pythagorean Theorem and its converse using visual models.	G8 M2 Lesson 15: Informal Proof of the Pythagorean Theorem G8 M3 Topic C: The Pythagorean Theorem G8 M7 Lesson 15: Pythagorean Theorem, Revisited G8 M7 Lesson 16: Converse of the Pythagorean Theorem
8.GSR.8.2 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles within authentic, mathematical problems in two and three dimensions.	 G8 M2 Topic D: The Pythagorean Theorem G8 M3 Topic C: The Pythagorean Theorem G8 M7 Lesson 1: The Pythagorean Theorem G8 M7 Lesson 4: Simplifying Square Roots G8 M7 Lesson 5: Solving Equations with Radicals G8 M7 Lesson 17: Distance on the Coordinate Plane G8 M7 Lesson 18: Applications of the Pythagorean Theorem G8 M7 Lesson 19: Cones and Spheres G8 M7 Lesson 23: Nonlinear Motion
8.GSR.8.3 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system in practical, mathematical problems.	G8 M2 Lesson 16: Applications of the Pythagorean Theorem G8 M7 Lesson 17: Distance on the Coordinate Plane

Mathematics Standards	Aligned Components of Eureka Math
8.GSR.8.4	G8 M5 Topic B: Volume
Apply the formulas for the volume of cones, cylinders, and spheres and use them to solve in relevant problems.	G8 M7 Lesson 19: Cones and Spheres G8 M7 Lesson 20: Truncated Cones G8 M7 Lesson 21: Volume of Composite Solids G8 M7 Lesson 22: Average Rate of Change