

Algebra II | Indiana Academic Standards for Mathematics Correlation to Eureka Math®

About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, *Eureka Math*[®] helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus–a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of *Eureka Math* aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u>.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at <u>greatminds.org/</u><u>math/curriculum</u>.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Mathematics Process Standards	Aligned Components of Eureka Math
PS.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical processes. These are designated in the Module Overview and labeled in lessons. For example:
Reason abstractly and quantitatively.	A STORY OF FUNCTIONS Lesson 2 M2 ALGEBRA II
PS.3 Construct viable arguments and critique the reasoning of others.	Opening Exercise Suppose a Ferris wheel has a radius of 50 feet. We will measure the height of a passenger car that starts in the 3 o'clock position with respect to the horizontal line through the center of the wheel. That is, we consider the height of the passenger car at the outset of the problem (that is, after a 0° rotation) to be 0 feet.
PS.4 Model with mathematics.	a. Mark the diagram to show the position of a passenger car at 30-degree intervals as it rotates counterclockwise around the Ferris wheel.
PS.5 Use appropriate tools strategically.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PS.6 Attend to precision.	210 -20 210 -30 240 -300 270 -300
PS.7	
Look for and make use of structure.	-
PS.8 Look for and express regularity in repeated reasoning.	

Arithmetic and Structure of Expressions, Equations, and Functions

Students simplify, manipulate, and solve nonlinear expressions, equations, and functions in a variety of forms.

for Mathematics	Aligned Components of Eureka Math
AII.ASE.1	Algebra II M3 Lesson 3: Rational Exponents
Explain how extending the properties of integer exponents to rational numbers allows for a notation for radicals in terms of rational exponents (e.g., $5^{\frac{1}{3}}$) and explain how this is defined.	Algebra II M3 Lesson 4: Properties of Exponents and Radicals
AII.ASE.2	Algebra II M1 Lesson 3: The Division of Polynomials
Rewrite algebraic rational expressions	Algebra II M1 Lesson 4: Comparing Methods—Long Division, Again?
in equivalent forms (e.g., using properties	Algebra II M1 Lesson 5: Putting It All Together
and describe how rewriting those	Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring–What If There Is a Remainder?
expressions reveals mathematical	Algebra II M1 Lesson 22: Equivalent Rational Expressions
structure. Add, subtract, multiply, and	Algebra II M1 Lesson 23: Comparing Rational Expressions
divide digebraic rational expressions. (L)	Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions
	Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions
	Precalculus and Advanced Topics M3 Lesson 10: The Structure of Rational Expressions
AII.ASE.3	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
Solve systems of equations consisting of linear and nonlinear equations or functions in two variables algebraically and graphically.	Algebra II M1 Lesson 31: Systems of Equations
	Algebra II M1 Lesson 32: Graphing Systems of Equations
	Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real Number Solutions?
	Algebra II M3 Lesson 24: Solving Exponential Equations

Indiana Academic Standards

for Mathematics	Aligned Components of Eureka Math
AII.ASE.4	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
Solve exponential and logarithmic equations in one variable.	Algebra II M3 Lesson 8: The "WhatPower" Function
	Algebra II M3 Lesson 12: Properties of Logarithms
	Algebra II M3 Lesson 13: Changing the Base
	Algebra II M3 Lesson 14: Solving Logarithmic Equations
	Algebra II M3 Lesson 15: Why Were Logarithms Developed?
	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 24: Solving Exponential Equations

Indiana Academic Standards

Function Families

Students represent nonlinear functions in a variety of forms, recognizing and applying key features based on the type of function.

Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math
All.FF.1	This standard is fully addressed by the lessons aligned to its subsections.
Using technology, identify, create, and connect algebraic and graphical representations of each of the function families listed: (E)	

for Mathematics	Aligned Components of Eureka Math
All.FF.1.a	Algebra I M1 Lesson 2: Graphs of Quadratic Functions
Quadratic	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
All.FF.1.b	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
Polynomial	Algebra II M1 Lesson 14: Graphing Factored Polynomials
	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction

for Mathematics	Aligned Components of Eureka Math
All.FF.1.c	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
Square root	Algebra I M5 Lesson 1: Analyzing a Graph
All.FF.1.d	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
Rational	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
All.FF.1.e	Algebra I M1 Lesson 3: Graphs of Exponential Functions
Exponential	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
All.FF.1.f	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
Logarithmic	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 33: The Million Dollar Problem

Aligned Components of Eureka Math Algebra I M1 Lesson 1: Graphs of Piecewise Linear Functions All.FF.1.g Piecewise-defined and absolute Algebra I M3 Lesson 15: Piecewise Functions value functions Algebra I M5 Lesson 1: Analyzing a Graph All.FF.2 Algebra I M3 Topic A: Linear and Exponential Sequences Graph each of the families of function Algebra I M3 Topic B: Functions and Their Graphs with and without technology. Identify Algebra I M3 Topic C: Transformations of Functions and describe key features, such Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems as intercepts, domain and range, asymptotes, symmetry, and end Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions behavior. Create inverse functions Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, f(x) = a(x - m)(x - n)algebraically and/or graphically based Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables on a given function. Model real-world situations with each function family. (E) Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra I M4 Lesson 23: Modeling with Quadratic Functions Algebra I M5 Topic A: Elements of Modeling Algebra I M5 Topic B: Completing the Modeling Cycle Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions Algebra II M1 Lesson 16: Modeling with Polynomials-An Introduction

for Mathematics	Aligned Components of Eureka Math
All.FF.2 continued	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M3 Topic C: Exponential and Logarithmic Functions and Their Graphs
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Algebra II M3 Lesson 30: Buying a Car
	Algebra II M3 Lesson 33: The Million Dollar Problem
	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
	Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions
	Precalculus and Advanced Topics M3 Topic C: Inverse Functions
AII.FF.3	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
Use graphical and algebraic structures and techniques to transform functions into equivalent forms to expose different information and identify key features. Connect the meaning of the key features to contextual situations. (E)	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions

for Mathematics	Aligned Components of Eureka Math
All.FF.3 continued	Algebra II M1 Lesson 14: Graphing Factored Polynomials
	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
	Algebra II M3 Lesson 23: Bean Counting
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
All.FF.4	Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
Solve real-world problems with each	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
function family, including situations	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
phenomena. (E)	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Topic B: Completing the Modeling Cycle
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Algebra II M3 Topic E: Geometric Series and Finance

Modeling with Functions and Data

Students use families of functions to model real-world situations using multiple mathematical representations.

Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math
AII.MFD.1	Algebra II M3 Lesson 8: The "WhatPower" Function
Define functions and their inverses and illustrate examples algebraically and graphically. Identify real-world situations that can be modeled using functions. (E)	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Topic C: Inverse Functions
AII.MFD.2	Algebra I M3 Topic A: Linear and Exponential Sequences
Represent real-world problems that	Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
can be modeled by linear, quadratic,	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
using tables, graphs, and equations. Use	Algebra I M4 Lesson 12: Completing the Square
technology to represent the functional	Algebra I M4 Lesson 15: Using the Quadratic Formula
relationships and translate and interpret	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
quadratic, intercepts, end behavior) with	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
respect to the context. (E)	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Topic B: Completing the Modeling Cycle
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
	Algebra II M3 Lesson 6: Euler's Number, <i>e</i>
	Algebra II M3 Lesson 7: Bacteria and Exponential Growth

for Mathematics	Aligned Components of Eureka Math
All.MFD.2 continued	Algebra II M3 Lesson 22: Choosing a Model Algebra II M3 Lesson 23: Bean Counting Algebra II M3 Lesson 26: Percent Rate of Change Algebra II M3 Lesson 27: Modeling with Exponential Functions Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited Algebra II M3 Topic E: Geometric Series and Finance
All.MFD.3 Use technology to find a linear, quadratic, or exponential function that models a relationship for a bivariate data set to make predictions; interpret the correlation coefficient for linear models. Compare and evaluate model fit using different function families. (E)	Algebra I M2 Topic D: Numerical Data on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
All.MFD.4 Explore the effects of function transformations using graphing technology. Explain the effects of transformations of functions such as $f(x) + k$, $kf(x)$, $f(kx)$, or $f(x + k)$ for different functions and values of k . (E)	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions Algebra I M3 Lesson 18: Four Interesting Transformations of Functions Algebra I M3 Lesson 19: Four Interesting Transformations of Functions Algebra I M3 Lesson 20: Four Interesting Transformations of Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions

Indiana Academic Standards

Modeling with Advanced Algebra

Students use advanced algebra concepts to model real-world function situations and use specific algebraic techniques to reveal and make use of structure with families of functions.

for Mathematics	Aligned Components of Eureka Math
AII.MAA.1	This standard is fully addressed by the lessons aligned to its subsections.
Use algebraic and graphical strategies to make use of structure with quadratic, polynomial, and rational functions to solve real-world problems, including but not limited to:	
All.MAA.1.a	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
Completing the square to rewrite	Algebra I M4 Lesson 11: Completing the Square
contextual quadratic functions	Algebra I M4 Lesson 12: Completing the Square
the outcome;	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
AII.MAA.1.b	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
Determining the number of solutions to a function using graphical and algebraic forms (including the discriminant and complex numbers as appropriate);	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
	Algebra II M1 Lesson 19: The Remainder Theorem
	Algebra II M1 Lesson 37: A Surprising Boost from Geometry
	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations
	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
	Algebra II M1 Lesson 40: Obstacles Resolved–A Surprising Result

Indiana Asadamia Ctandarda

for Mathematics	Aligned Components of Eureka Math
All.MAA.1.c	Algebra II M1 Lesson 1: Successive Differences in Polynomials
Factoring, grouping, and rewriting	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
functions using properties	Algebra II M1 Topic B: Factoring–Its Use and Its Obstacles
or exponents, and	Algebra II M3 Lesson 1: Integer Exponents
	Algebra II M3 Lesson 3: Rational Exponents
	Algebra II M3 Lesson 4: Properties of Exponents and Radicals
All.MAA.1.d	Algebra II M1 Lesson 22: Equivalent Rational Expressions
Identifying and explaining extraneous roots.	Algebra II M1 Lesson 23: Comparing Rational Expressions
	Algebra II M1 Lesson 26: Solving Rational Equations
	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
	Algebra II M1 Lesson 28: A Focus on Square Roots
	Algebra II M1 Lesson 29: Solving Radical Equations
AII.MAA.2	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations
Represent and solve real-world systems of linear equations and inequalities in two or three variables algebraically and using technology. Interpret the solution, and determine whether it is reasonable. (E)	Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations
	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
	Algebra II M1 Lesson 30: Linear Systems in Three Variables
	Algebra II M1 Lesson 31: Systems of Equations
	Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real Number Solutions?
AII.MAA.3	Precalculus and Advanced Topics M2 Topic A: Networks and Matrices
Model real-world phenomena using linear programming and matrices.	Supplemental material is necessary to address modeling real-world phenomena using linear programming.

Modeling with Data and Statistics

Students use statistics and probability techniques to collect and interpret complex data that can be modeled using functions.

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math

All.MDS.1	Algebra II M4 Lesson 13: Using Sample Data to Estimate a Population Characteristic
Distinguish between random and non-random sampling methods, identify possible sources of bias in sampling, describe how such bias can be controlled and reduced, evaluate the characteristics of a good survey and well-designed experiment, design simple experiments or investigations to collect data to answer questions of interest, and make inferences from sample results.	Algebra II M4 Lesson 14: Sampling Variability in the Sample Proportion
	Algebra II M4 Lesson 15: Sampling Variability in the Sample Proportion
	Algebra II M4 Lesson 16: Margin of Error When Estimating a Population Proportion
	Algebra II M4 Lesson 17: Margin of Error When Estimating a Population Proportion
	Algebra II M4 Lesson 18: Sampling Variability in the Sample Mean
	Algebra II M4 Lesson 19: Sampling Variability in the Sample Mean
	Algebra II M4 Lesson 20: Margin of Error When Estimating a Population Mean
	Algebra II M4 Lesson 21: Margin of Error When Estimating a Population Mean
AII.MDS.2	Algebra II M4 Lesson 1: Chance Experiments, Sample Spaces, and Events
Using the results of a simulation, decide if a specified model is consistent with the results. Construct a theoretical model, and apply the law of large numbers to show the relationship between the two models. (E)	
AII.MDS.3	Supplemental material is necessary to address this standard.
Use data science techniques such as predictive modeling, linear algebra, and conditional probability to analyze	

Modeling with Quantities

Students use combinatorics to quantify and model real-world situations.

Indiana Academic Standards for Mathematics	Aligned Components of Eureka Math
All.MQ.1 Model real-world probability situations using permutations, combinations, and the Fundamental Counting Principle. (E)	Supplemental material is necessary to address this standard.