ABOUT EUREKA MATH

Created by the nonprofit Great Minds, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding of and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus—a principle tested and proven to be essential in students’ mastery of math.

Teachers and students using Eureka Math find the trademark “Aha!” moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

ALIGNED

Eureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

DATA

Schools and districts nationwide are experiencing student academic growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

FULL SUITE OF RESOURCES

As a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.

The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources
Indiana Academic Standards for Mathematics Correlation to Eureka Math®

GRADE 3 MATHEMATICS

The majority of the Grade 3 Indiana Academic Standards for Mathematics are fully covered by the Grade 3 Eureka Math curriculum. The areas where the Grade 3 Indiana Academic Standards for Mathematics and Grade 3 Eureka Math do not align will require the use of Eureka Math content from other grade levels or supplemental materials. A detailed analysis of alignment is provided in the table below. With strategic placement of supplemental materials, Eureka Math can ensure that students are successful in achieving the proficiencies of the Indiana Academic Standards for Mathematics while still benefiting from the coherence and rigor of Eureka Math.

INDICATORS

- **GREEN** indicates the Indiana standard is addressed in Eureka Math.
- **YELLOW** indicates the Indiana standard may not be completely addressed in Eureka Math.
- **RED** indicates the Indiana standard is not addressed in Eureka Math.
- **BLUE** indicates there is a discrepancy between the grade level at which this standard is addressed in Indiana and in Eureka Math.
Process Standards for Mathematics

PS.1: Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, “Does this make sense?” and “Is my answer reasonable?” They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole.

Aligned Components of *Eureka Math*

Lessons in every module engage students in making sense of problems and persevering in solving them as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 1, which is specifically addressed in the following modules:

- **G3 M1:** Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10
- **G3 M3:** Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10
- **G3 M7:** Geometry and Measurement Word Problems
Process Standards for Mathematics

PS.2: Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Aligned Components of *Eureka Math*

Lessons in every module engage students in reasoning abstractly and quantitatively as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 2, which is specifically addressed in the following modules:

- G3 M1: Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10
- G3 M2: Place Value and Problem Solving with Units of Measure
- G3 M4: Multiplication and Area
- G3 M5: Fractions as Numbers on the Number Line
- G3 M6: Collecting and Displaying Data
Process Standards for Mathematics

PS.3: Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

<table>
<thead>
<tr>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lessons in every module engage students in constructing viable arguments and critiquing the reasoning of others as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 3, which is specifically addressed in the following modules:</td>
</tr>
<tr>
<td>G3 M1: Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10</td>
</tr>
<tr>
<td>G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10</td>
</tr>
<tr>
<td>G3 M4: Multiplication and Area</td>
</tr>
<tr>
<td>G3 M5: Fractions as Numbers on the Number Line</td>
</tr>
<tr>
<td>G3 M7: Geometry and Measurement Word Problems</td>
</tr>
</tbody>
</table>
Process Standards for Mathematics

PS.4: Model with mathematics.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Aligned Components of Eureka Math

Lessons in every module engage students in modeling with mathematics as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 4, which is specifically addressed in the following modules:

- **G3 M1:** Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10
- **G3 M2:** Place Value and Problem Solving with Units of Measure
- **G3 M3:** Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10
Process Standards for Mathematics

PS.5: Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving.

Aligned Components of *Eureka Math*

Lessons in every module engage students in using appropriate tools strategically as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 5, which is specifically addressed in the following modules:

- G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10
- G3 M6: Collecting and Displaying Data
- G3 M7: Geometry and Measurement Word Problems
Process Standards for Mathematics

PS.6: Attend to precision.

Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.

Aligned Components of *Eureka Math*

Lessons in every module engage students in attending to precision as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 6, which is specifically addressed in the following modules:

- **G3 M2:** Place Value and Problem Solving with Units of Measure
- **G3 M4:** Multiplication and Area
- **G3 M5:** Fractions as Numbers on the Number Line
- **G3 M6:** Collecting and Displaying Data
- **G3 M7:** Geometry and Measurement Word Problems
Process Standards for Mathematics

PS.7: Look for and make use of structure.
Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.

Lessons in every module engage students in looking for and making use of structure as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 7, which is specifically addressed in the following modules:
- G3 M1: Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10
- G3 M2: Place Value and Problem Solving with Units of Measure
- G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10
- G3 M4: Multiplication and Area
- G3 M5: Fractions as Numbers on the Number Line
- G3 M6: Collecting and Displaying Data

PS.8: Look for and express regularity in repeated reasoning.
Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.

Lessons in every module engage students in looking for and expressing regularity in repeated reasoning as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 8, which is specifically addressed in the following module:
- G3 M4: Multiplication and Area
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Sense</td>
<td>3.NS.1
Read and write whole numbers up to 10,000. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000.</td>
<td>G4 M1 Topic A: Place Value of Multi-Digit Whole Numbers
G4 M3 Topic B: Multiplication by 10, 100, and 1,000
G4 M6 Lesson 8: Use understanding of fraction equivalence to investigate decimal numbers on the place value chart expressed in different units.</td>
</tr>
<tr>
<td></td>
<td>3.NS.2
Compare two whole numbers up to 10,000 using $>$, $=$, and $<$ symbols.</td>
<td>G4 M1 Topic A: Place Value of Multi-Digit Whole Numbers
G4 M1 Topic B: Comparing Multi-Digit Whole Numbers</td>
</tr>
<tr>
<td></td>
<td>3.NS.3
Understand a fraction, $1/b$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a/b, as the quantity formed by a parts of size $1/b$.</td>
<td>G3 M5 Topic B: Unit Fractions and Their Relation to the Whole
G3 M5 Lesson 12: Specify the corresponding whole when presented with one equal part.</td>
</tr>
<tr>
<td>Domain</td>
<td>Standards for Mathematical Content</td>
<td>Aligned Components of Eureka Math</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| 3.NS.4 | Represent a fraction, $1/b$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1/b$ and that the endpoint of the part based at 0 locates the number $1/b$ on the number line. | G3 M5 Lesson 14: Place fractions on a number line with endpoints 0 and 1.
G3 M5 Lesson 15: Place any fraction on a number line with endpoints 0 and 1.
G3 M5 Lesson 30: Partition various wholes precisely into equal parts using a number line method. |
<p>| 3.NS.5 | Represent a fraction, a/b, on a number line by marking off lengths $1/b$ from 0. Recognize that the resulting interval has size a/b, and that its endpoint locates the number a/b on the number line. | G3 M5 Topic D: Fractions on the Number Line |
| 3.NS.6 | Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line. | G3 M5 Topic E: Equivalent Fractions |
| 3.NS.7 | Recognize and generate simple equivalent fractions (e.g., $1/2 = 2/4$, $4/6 = 2/3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model). | G3 M5 Topic E: Equivalent Fractions |</p>
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| 3.NS.8 | Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model). | G3 M5 Topic C: Comparing Unit Fractions and Specifying the Whole
G3 M5 Lesson 18: Compare fractions and whole numbers on the number line by reasoning about their distance from 0.
G3 M5 Lesson 19: Understand distance and position on the number line as strategies for comparing fractions.
G3 M5 Topic F: Comparison, Order, and Size of Fractions |
| 3.NS.9 | Use place value understanding to round 2- and 3-digit whole numbers to the nearest 10 or 100. | G3 M2 Topic C: Rounding to the Nearest Ten and Hundred
G3 M2 Lesson 17: Estimate sums by rounding and apply to solve measurement word problems.
G3 M2 Topic E: Two- and Three-Digit Measurement Subtraction Using the Standard Algorithm |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| Computation | 3.C.1 Fluently add and subtract whole numbers within 1000 using strategies and algorithms based on place value, properties or operations, and relationships between addition and subtraction. | G3 M2 Lesson 4: Solve word problems involving time intervals within 1 hour by counting backward and forward using the number line and clock.
G3 M2 Lesson 5: Solve word problems involving time intervals within 1 hour by adding and subtracting on the number line.
G3 M2 Lesson 8: Solve one-step word problems involving metric weights within 100 and estimate to reason about solutions.
G3 M2 Lesson 11: Solve mixed word problems involving all four operations with grams, kilograms, liters, and milliliters given in the same units.
G3 M2 Topic D: Two- and Three-Digit Measurement Addition Using the Standard Algorithm
G3 M2 Topic E: Two- and Three-Digit Measurement Subtraction Using the Standard Algorithm |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.C.2</td>
<td>Represent the concept of multiplication of whole numbers with the following models: equal-sized groups, arrays, area models, and equal “jumps” on a number line. Understand the properties of 0 and 1 in multiplication.</td>
<td>G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10</td>
</tr>
<tr>
<td>3.C.3</td>
<td>Represent the concept of division of whole numbers with the following models: partitioning, sharing, and an inverse of multiplication. Understand the properties of 0 and 1 in division.</td>
<td>G3 M1: Properties of Multiplication and Division and Solving Problems with Units of 2–5 and 10</td>
</tr>
</tbody>
</table>
| 3.C.4 | Interpret whole-number quotients of whole numbers (e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each). | G3 M1 Topic B: Division as an Unknown Factor Problem
G3 M1 Topic D: Division Using Units of 2 and 3
G3 M1 Lesson 17: Model the relationship between multiplication and division. |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| **3.C.5** | Multiply and divide within 100 using strategies, such as the relationship between multiplication and division (e.g., knowing that 8 x 5 = 40, one knows 40 ÷ 5 = 8), or properties of operations. | G3 M1 Topic D: Division Using Units of 2 and 3
G3 M1 Topic F: Distributive Property and Problem Solving Using Units of 2–5 and 10
G3 M3 Lesson 7: Interpret the unknown in multiplication and division to model and solve problems using units of 6 and 7.
G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 18: Solve two-step word problems involving all four operations and assess the reasonableness of solutions. |
| **3.C.6** | Demonstrate fluency with mastery of multiplication facts and corresponding division facts of 0 to 10. | G3 M1 Topic E: Multiplication and Division Using Units of 4
G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10 |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| **Algebraic Thinking** | 3.AT.1 Solve real-world problems involving addition and subtraction of whole numbers within 1,000 (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). | G3 M2 Lesson 4: Solve word problems involving time intervals within 1 hour by counting backward and forward using the number line and clock.
G3 M2 Lesson 5: Solve word problems involving time intervals within 1 hour by adding and subtracting on the number line.
G3 M2 Lesson 8: Solve one-step word problems involving metric weights within 100 and estimate to reason about solutions.
G3 M2 Lesson 11: Solve mixed word problems involving all four operations with grams, kilograms, liters, and milliliters given in the same units.
G3 M2 Topic D: Two- and Three-Digit Measurement Addition Using the Standard Algorithm
G3 M2 Topic E: Two- and Three-Digit Measurement Subtraction Using the Standard Algorithm |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| 3.AT.2 | Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). | G3 M1 Topic D: Division Using Units of 2 and 3
G3 M1 Topic F: Distributive Property and Problem Solving Using Units of 2–5 and 10
G3 M3 Lesson 7: Interpret the unknown in multiplication and division to model and solve problems using units of 6 and 7.
G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 18: Solve two-step word problems involving all four operations and assess the reasonableness of solutions. |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| 3.AT.3 | Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). | G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 18: Solve two-step word problems involving all four operations and assess the reasonableness of solutions.
G3 M7 Topic A: Solving Word Problems |
| 3.AT.4 | Interpret a multiplication equation as equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each).
Represent verbal statements of equal groups as multiplication equations. | G3 M1 Topic A: Multiplication and the Meaning of the Factors
G3 M1 Topic C: Multiplication Using Units of 2 and 3 |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| 3.AT.5 | Determine the unknown whole number in a multiplication or division equation relating three whole numbers. | G3 M1 Topic D: Division Using Units of 2 and 3
G3 M1 Lesson 17: Model the relationship between multiplication and division.
G3 M3 Lesson 3: Multiply and divide with familiar facts using a letter to represent the unknown.
G3 M3 Topic B: Multiplication and Division Using Units of 6 and 7
G3 M3 Lesson 11: Interpret the unknown in multiplication and division to model and solve problems.
G3 M3 Lesson 15: Interpret the unknown in multiplication and division to model and solve problems. |
| 3.AT.6 | Create, extend, and give an appropriate rule for number patterns within 100 (including patterns in the addition table or multiplication table). | G3 M3: Multiplication and Division with Units of 0, 1, 6–9, and Multiples of 10
G4 M3: Multi-Digit Multiplication and Division |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
</table>
| Geometry | **3.G.1**
Identify and describe the following: cube, sphere, prism, pyramid, cone, and cylinder. | G3 M7 Topic B: Attributes of Two-Dimensional Figures |
| | **3.G.2**
Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories. | G3 M7 Topic B: Attributes of Two-Dimensional Figures |
| | **3.G.3**
Identify, describe and draw points, lines and line segments using appropriate tools (e.g., ruler, straightedge, and technology), and use these terms when describing two-dimensional shapes. | G3 M7 Topic B: Attributes of Two-Dimensional Figures |
| | **3.G.4**
Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole (1/2, 1/3, 1/4, 1/6, 1/8). | G3 M5 Topic A: Partitioning a Whole into Equal Parts |
<table>
<thead>
<tr>
<th>Domain</th>
<th>Standards for Mathematical Content</th>
<th>Aligned Components of Eureka Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>3.M.1 Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of</td>
<td>G3 M2 Topic B: Measuring Weight and Liquid Volume in Metric Units</td>
</tr>
<tr>
<td></td>
<td>objects in quarts (qt), gallons (gal), and liters (l). Add, subtract, multiply, or divide to</td>
<td>G3 M2 Lesson 12: Round two-digit measurements to the nearest ten on the vertical number line.</td>
</tr>
<tr>
<td></td>
<td>solve one-step real-world problems involving masses or volumes that are given in the same units</td>
<td>G3 M2 Lesson 21: Estimate sums and differences of measurements by rounding, and then solve mixed word</td>
</tr>
<tr>
<td></td>
<td>(e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).</td>
<td>problems.</td>
</tr>
<tr>
<td></td>
<td>3.M.2 Choose and use appropriate units and tools to estimate and measure length, weight, and</td>
<td>G2 M2 Topic B: Measure and Estimate Length Using Different Measurement Tools</td>
</tr>
<tr>
<td></td>
<td>temperature. Estimate and measure length to a quarter-inch, weight in pounds, and temperature in</td>
<td>G2 M7 Topic D: Measuring and Estimating Length Using Customary and Metric Units</td>
</tr>
<tr>
<td></td>
<td>degrees Celsius and Fahrenheit.</td>
<td>Note: Supplemental material is necessary to address temperature.</td>
</tr>
<tr>
<td></td>
<td>3.M.3 Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and</td>
<td>G3 M2 Topic A: Time Measurement and Problem Solving</td>
</tr>
<tr>
<td></td>
<td>measure time intervals in minutes. Solve real-world problems involving addition and subtraction of</td>
<td>G3 M2 Lesson 12: Round two-digit measurements to the nearest ten on the vertical number line.</td>
</tr>
<tr>
<td></td>
<td>time intervals in minutes.</td>
<td></td>
</tr>
<tr>
<td>Domain</td>
<td>Standards for Mathematical Content</td>
<td>Aligned Components of Eureka Math</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>3.M.4</td>
<td>Find the value of any collection of coins and bills. Write amounts less than a dollar using the ¢ symbol and write larger amounts using the $ symbol in the form of dollars and cents (e.g., $4.59). Solve real-world problems to determine whether there is enough money to make a purchase.</td>
<td>G2 M7 Topic B: Problem Solving with Coins and Bills</td>
</tr>
<tr>
<td>3.M.5</td>
<td>Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.</td>
<td>G3 M4 Topic A: Foundations for Understanding Area G3 M4 Lesson 6: Draw rows and columns to determine the area of a rectangle given an incomplete array.</td>
</tr>
<tr>
<td>3.M.6</td>
<td>Multiply side lengths to find areas of rectangles with whole-number side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.</td>
<td>G3 M4: Multiplication and Area</td>
</tr>
<tr>
<td>3.M.7</td>
<td>Find perimeters of polygons given the side lengths or by finding an unknown side length.</td>
<td>G3 M7: Geometry and Measurement Word Problems</td>
</tr>
<tr>
<td>Domain</td>
<td>Standards for Mathematical Content</td>
<td>Aligned Components of Eureka Math</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>3.DA.1 Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set—including data collected through observations, surveys, and experiments—with several categories. Solve one- and two-step “how many more” and “how many less” problems regarding the data and make predictions based on the data.</td>
<td>G3 M6: Collecting and Displaying Data</td>
</tr>
<tr>
<td></td>
<td>3.DA.2 Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.</td>
<td>G3 M6: Collecting and Displaying Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3 M7 Lesson 19: Use a line plot to record the number of rectangles constructed from a given number of unit squares.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3 M7 Lesson 22: Use a line plot to record the number of rectangles constructed in Lessons 20 and 21.</td>
</tr>
</tbody>
</table>