GREAT MINDS

Algebra II | New York Next Generation Mathematics Learning Standards Correlation to Eureka Math®

About Eureka Math

EUREKA

MATH

Created by Great Minds[®], a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/ math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Standards for Mathematical Practice	Aligned Components of Eureka Math
MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are designated in the Module Overview and labeled in lessons.
MP.2 Reason abstractly and quantitatively.	A STORY OF FUNCTIONS Lesson 2 M2 ALGEBRA II
MP.3 Construct viable arguments and critique the reasoning of others.	Opening Exercise Suppose a Ferris wheel has a radius of 50 feet. We will measure the height of a passenger car that starts in the 3 o'clock position with respect to the horizontal line through the center of the wheel. That is, we consider the height of the passenger car at the outset of the problem (that is, after a 0° rotation) to be 0 feet.
MP.4 Model with mathematics.	 a. Mark the diagram to show the position of a passenger car at 30-degree intervals as it rotates counterclockwise around the Ferris wheel. ¹²⁰ ⁶⁰ ⁶⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰ ³⁰
MP.5 Use appropriate tools strategically.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MP.6 Attend to precision.	
MP.7 Look for and make use of structure.	
MP.8 Look for and express regularity in repeated reasoning.	

The Real Number System

Extend the properties of exponents to rational exponents.

New York Next Generation Mathematics Learning Standards Aligned Components of Eureka Math Algebra II M3 Lesson 3: Rational Exponents All-N.RN.1 Explore how the meaning of rational Algebra II M3 Lesson 4: Properties of Exponents and Radicals exponents follows from extending the Algebra II M3 Lesson 5: Irrational Exponents properties of integer exponents. Algebra II M3 Lesson 1: Integer Exponents AII-N.RN.2 Convert between radical expressions Algebra II M3 Lesson 2: Base 10 and Scientific Notation and expressions with rational exponents Algebra II M3 Lesson 3: Rational Exponents using the properties of exponents. Algebra II M3 Lesson 4: Properties of Exponents and Radicals

The Complex Number System

New Verle Next Concretion

Perform arithmetic operations with complex numbers.

Mathematics Learning Standards	Aligned Components of Eureka Math
All-N.CN.1 Know there is a complex number <i>i</i> such that $i^2 = -1$, and every complex number has the form $a + bi$ with <i>a</i> and <i>b</i> real.	Algebra II M1 Lesson 37: A Surprising Boost from Geometry
All-N.CN.2 Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Algebra II M1 Lesson 37: A Surprising Boost from Geometry

Seeing Structure in Expressions

Interpret the structure of expressions.

New York Next Generation Mathematics Learning Standards

AII-A.SSE.2	Algebra II M1 Lesson 2: The Multiplication of Polynomials
Recognize and use the structure of an expression to identify ways to rewrite it.	Algebra II M1 Lesson 3: The Division of Polynomials
	Algebra II M1 Lesson 5: Putting It All Together
	Algebra II M1 Lesson 6: Dividing by $x - a$ and by $x + a$
	Algebra II M1 Lesson 7: Mental Math
	Algebra II M1 Lesson 9: Radicals and Conjugates
	Algebra II M1 Lesson 10: The Power of Algebra—Finding Pythagorean Triples
	Algebra II M1 Lesson 12: Overcoming Obstacles in Factoring
	Algebra II M1 Lesson 13: Mastering Factoring
	Algebra II M3 Lesson 10: Building Logarithmic Tables
	Algebra II M3 Lesson 11: The Most Important Property of Logarithms
	Algebra II M3 Lesson 12: Properties of Logarithms
	Algebra II M3 Lesson 14: Solving Logarithmic Equations
	Algebra II M3 Lesson 15: Why Were Logarithms Developed?

Seeing Structure in Expressions

Write expressions in equivalent forms to reveal their characteristics.

New York Next Generation Mathematics Learning Standards Aligned Components of Eureka Math This standard is fully addressed by the lessons aligned to its subsections. All-A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. All-A.SSE.3.a Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, f(x) = a(x - m)(x - n)Factor quadratic expressions including Algebra I M4 Lesson 15: Using the Quadratic Formula leading coefficients other than 1 Algebra II M1 Lesson 14: Graphing Factored Polynomials to reveal the zeros of the function

Algebra II M3 Lesson 26: Percent Rate of Change

All-A.SSE.3.c

it defines

Use the properties of exponents to rewrite exponential expressions.

Arithmetic with Polynomials and Rational Expressions

Understand the relationship between zeros and factors of polynomials.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.APR.2	Algebra II M1 Lesson 19: The Remainder Theorem
Apply the Remainder Theorem: For a polynomial $p(x)$ and a number a , the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if $(x - a)$ is a factor of $p(x)$.	

New York Next Generation Mathematics Learning Standards

Aligned Components of Eureka Math

AII-A.APR.3	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
Identify zeros of polynomial functions when suitable factorizations are available.	

Arithmetic with Polynomials and Rational Expressions

Rewrite rational expressions.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.APR.6	Algebra II M1 Lesson 4: Comparing Methods–Long Division, Again?
Rewrite rational expressions in different forms: Write $a(x)/b(x)$ in the form q(x) + r(x)/b(x), where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$.	Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring–What If There Is a Remainder? Algebra II M1 Lesson 22: Equivalent Rational Expressions Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions

Creating Equations

Create equations that describe numbers or relationships.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
All-A.CED.1	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
Create equations and inequalities in one variable to represent a real-world context.	Algebra II M3 Lesson 26: Percent Rate of Change Algebra II M3 Lesson 27: Modeling with Exponential Functions

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.REI.1b	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
Explain each step when solving rational	Algebra II M1 Lesson 26: Solving Rational Equations
or radical equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Algebra II M1 Lesson 28: A Focus on Square Roots
AII-A.REI.2	Algebra II M1 Lesson 22: Equivalent Rational Expressions
Solve rational and radical equations in one variable, identify extraneous solutions, and explain how they arise.	Algebra II M1 Lesson 23: Comparing Rational Expressions
	Algebra II M1 Lesson 26: Solving Rational Equations
	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
	Algebra II M1 Lesson 28: A Focus on Square Roots
	Algebra II M1 Lesson 29: Solving Radical Equations

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.REI.4	This standard is fully addressed by the lessons aligned to its subsection.
Solve quadratic equations in one variable.	

Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.REI.4.b	Algebra I M4 Lesson 5: The Zero Product Property
Solve quadratic equations by:	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
i) inspection, ii) taking square roots,	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
square, v) the quadratic formula, and	Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square
vi) graphing. Write complex solutions in $a + bi$ form.	Algebra I M4 Lesson 14: Deriving the Quadratic Formula
	Algebra I M4 Lesson 15: Using the Quadratic Formula
	Algebra II M1 Lesson 31: Systems of Equations
	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations

New York Next Generation

Reasoning with Equations and Inequalities

Solve systems of equations.

Mew York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-A.REI.7b	Algebra II M1 Lesson 31: Systems of Equations
Solve a system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	Algebra II M1 Lesson 32: Graphing Systems of Equations

Varia Navet Ca NI -.....

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

New York Next Generation Mathematics Learning Standards

Aligned Components of Eureka Math

AII-A.REI.11	Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real
Given the equations $y = f(x)$ and $y = g(x)$: i) recognize that each x-coordinate of the intersection(s) is the solution to the equation $f(x) = g(x)$; ii) find the solutions approximately using technology to graph the functions or make tables of values; iii) find the solution of $f(x) < g(x)$ or $f(x) \le g(x)$ graphically; and iv) interpret the solution in context.	Number Solutions? Algebra II M3 Lesson 24: Solving Exponential Equations

Interpreting Functions

Understand the concept of a function and use function notation.

New York Next Generation Mathematics Learning Standards

AII-F.IF.3	Algebra II M3 Lesson 26: Percent Rate of Change
Recognize that a sequence is a function whose domain is a subset of the integers.	

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

New York Next Generation Mathematics Learning Standards

Aligned Components of Eureka Math

AII-F.IF.4 For a function that models a relationship between two quantities: i) interpret key features of graphs and tables in terms of the quantities; and ii) sketch graphs showing key features given a verbal description of the relationship.	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
All-F.IF.6 Calculate and interpret the average rate of change of a function over a specified interval.	Algebra II M3 Lesson 6: Euler's Number, <i>e</i> Algebra II M3 Lesson 27: Modeling with Exponential Functions

Interpreting Functions

Analyze functions using different representations.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-F.IF.7	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions and show key features of the graph by hand and using technology when appropriate.	

Mathematics Learning Standards	Aligned Components of Eureka Math
All-F.IF.7.c	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
All-F.IF.7.e	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
Graph cube root, exponential and	Algebra II M2 Lesson 8: Graphing the Sine and Cosine Functions
logarithmic functions, showing intercepts	Algebra II M2 Lesson 11: Transforming the Graph of the Sine Function
functions, showing period, midline, and amplitude.	Algebra II M2 Lesson 12: Ferris Wheels–Using Trigonometric Functions to Model Cyclical Behavior
	Algebra II M2 Lesson 14: Graphing the Tangent Function
	Algebra II M3 Lesson 16: Rational and Irrational Numbers
	Algebra II M3 Lesson 17: Graphing the Logarithm Function
	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Precalculus and Advanced Topics M4 Lesson 11: Revisiting the Graphs of the Trigonometric Functions

New York Next Generation

Interpreting Functions

Analyze functions using different representations.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-F.IF.8	This standard is fully addressed by the lessons aligned to its subsection.
Write a function in different but equivalent forms to reveal and explain different properties of the function.	

Mathematics Learning Standards	Aligned Components of Eureka Math
All-F.IF.8.b	Algebra II M3 Lesson 23: Bean Counting
Use the properties of exponents	Algebra II M3 Lesson 27: Modeling with Exponential Functions
to interpret exponential functions, and classify them as representing exponential growth or decay.	Algebra II M3 Topic E: Geometric Series and Finance
AII-F.IF.9	Algebra II M3 Lesson 27: Modeling with Exponential Functions
Compare properties of two functions each represented in a different way	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Algebra II M3 Lesson 30: Buying a Car
in tables, or by verbal descriptions).	Algebra II M3 Lesson 31: Credit Cards

New York Next Generation Mathematics Learning Standards

Building Functions

Build a function that models a relationship between two quantities.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-F.BF.1	Algebra II M1 Lesson 1: Successive Differences in Polynomials
Write a function that describes	Algebra II M3 Lesson 5: Irrational Exponents
a relationship between two quantities.	Algebra II M3 Lesson 6: Euler's Number, <i>e</i>
	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
	Algebra II M3 Lesson 22: Choosing a Model
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Algebra II M3 Lesson 30: Buying a Car
	Algebra II M3 Lesson 33: The Million Dollar Problem

Mathematics Learning Standards	Aligned Components of Eureka Math
All-F.BF.1.a	Algebra II M1 Lesson 1: Successive Differences in Polynomials
Determine a function from context.	Algebra II M3 Lesson 5: Irrational Exponents
Determine an explicit expression,	Algebra II M3 Lesson 6: Euler's Number, e
calculation from a context.	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
All-F.BF.1.b	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
Combine standard function types using arithmetic operations.	Algebra II M3 Lesson 30: Buying a Car
	Algebra II M3 Lesson 33: The Million Dollar Problem
AII-F.BF.2	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 29: The Mathematics Behind a Structured Savings Plan
two forms.	

New York Next Generation

Building Functions

Build new functions from existing functions.

New York Next Generation Mathematics Learning Standards

All-F.BF.3b	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Using $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$: i) identify the effect on the graph when replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 19: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 20: Four Interesting Transformations of Functions
positive and negative); ii) find the value	Algebra I M4 Lesson 19: Translating Graphs of Functions
of k given the graphs; iii) write a new function using the value of k : and iv) use	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
technology to experiment with cases and	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
explore the effects on the graph. Include	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
their graphs.	
All-F.BF.4a	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
Find the inverse of a one-to-one function	Algebra II M3 Lesson 8: The "WhatPower" Function
both algebraically and graphically.	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Precalculus and Advanced Topics M3 Topic C: Inverse Functions
All-F.BF.5a	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
All-F.BF.5a Understand inverse relationships	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Lesson 20: Inverses of Logarithmic and Exponential Functions
All-F.BF.5a Understand inverse relationships between exponents and logarithms algebraically and graphically.	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Lesson 20: Inverses of Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving

New York Next Generation Mathematics Learning Standards

Aligned Components of Eureka Math

AII-F.BF.6	Algebra II M3 Topic E: Geometric Series and Finance
Represent and evaluate the sum of a finite arithmetic or finite geometric series, using summation (sigma) notation.	
AII-F.BF.7	Algebra II M3 Topic E: Geometric Series and Finance
Explore the derivation of the formulas for finite arithmetic and finite geometric series. Use the formulas to solve problems.	

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-F.LE.2	Algebra II M3 Lesson 1: Integer Exponents
Construct a linear or exponential function symbolically given: i) a graph; ii) a description of the relationship; and iii) two input-output pairs (include reading these from a table).	Algebra II M3 Lesson 6: Euler's Number, <i>e</i> Algebra II M3 Lesson 22: Choosing a Model

Mathematics Learning Standards	Aligned Components of Eureka Math
AII-F.LE.4	Algebra II M3 Lesson 8: The "WhatPower" Function
Use logarithms to solve exponential	Algebra II M3 Lesson 12: Properties of Logarithms
equations, such as $ab^{ct} = d$ (where a, b, c ,	Algebra II M3 Lesson 13: Changing the Base
and a are real numbers and $b > 0$ and evaluate the logarithm using technology.	Algebra II M3 Lesson 14: Solving Logarithmic Equations
	Algebra II M3 Lesson 15: Why Were Logarithms Developed?
	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Precalculus and Advanced Topics M3 Lesson 20: Inverses of Logarithmic and Exponential Functions
	Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving

New York Next Generation Mathematics Learning Standards

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

New York Next Generation Mathematics Learning Standards

AII-F.LE.5	Algebra II M3 Lesson 23: Bean Counting
Interpret the parameters in a linear or exponential function in terms of a context.	Algebra II M3 Topic E: Geometric Series and Finance

Trigonometric Functions

Extend the domain of trigonometric functions using the unit circle.

New York Next GenerationMathematics Learning StandardsAligned Components of Eureka Math

All-F.TF.1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	Algebra II M2 Lesson 9: Awkward! Who Chose the Number 360, Anyway?
All-F.TF.2 Apply concepts of the unit circle in the coordinate plane to calculate the values of the six trigonometric functions given angles in radian measure.	Algebra II M2 Lesson 1: Ferris Wheels—Tracking the Height of a Passenger Car Algebra II M2 Lesson 2: The Height and Co-Height Functions of a Ferris Wheel Algebra II M2 Lesson 3: The Motion of the Moon, Sun, and Stars—Motivating Mathematics Algebra II M2 Lesson 4: From Circle-ometry to Trigonometry Algebra II M2 Lesson 5: Extending the Domain of Sine and Cosine to All Real Numbers Algebra II M2 Lesson 7: Secant and the Co-Functions
All-F.TF.4 Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	Precalculus and Advanced Topics M4 Lesson 2: Properties of Trigonometric Functions

Trigonometric Functions

Model periodic phenomena with trigonometric functions.

New York Next Generation Mathematics Learning Standards

Aligned Components of Eureka Math

AII-F.TF.5	Algebra II M2 Lesson 11: Transforming the Graph of the Sine Function
Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, horizontal shift, and midline.	Algebra II M2 Lesson 12: Ferris Wheels–Using Trigonometric Functions to Model Cyclical Behavior
	Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets
	Algebra II M2 Lesson 14: Graphing the Tangent Function
	Precalculus and Advanced Topics M4 Lesson 6: Waves, Sinusoids, and Identities

Trigonometric Functions

Prove and apply trigonometric identities.

New York Next Generation Mathematics Learning Standards

All-F.TF.8	Algebra II M2 Lesson 15: What Is a Trigonometric Identity?
Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$. Find the value of any of the six trigonometric functions given any other trigonometric function value and when necessary find the quadrant of the angle.	Algebra II M2 Lesson 16: Proving Trigonometric Identities

A2 | New York Next Generation Mathematics Learning Standards Correlation to Eureka Math

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

New York Next GenerationMathematics Learning StandardsAligned Components of Eureka Math

All-S.ID.4a	Algebra II M4 Topic B: Modeling Data Distributions
Recognize whether or not a normal curve is appropriate for a given data set.	
All-S.ID.4b	Algebra II M4 Topic B: Modeling Data Distributions
If appropriate, determine population percentages using a graphing calculator for an appropriate normal curve.	

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
All-S.ID.6	This standard is fully addressed by the lessons aligned to its subsection.
Represent bivariate data on a scatter plot, and describe how the variables' values are related.	
All-S.ID.6.a	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
Fit a function to real-world data; use functions fitted to data to solve problems in the context of the data.	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
	Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets

A2 | New York Next Generation Mathematics Learning Standards Correlation to Eureka Math

Making Inferences and Justifying Conclusions

Understand and evaluate random processes underlying statistical experiments.

New York Next Generation Mathematics Learning Standards Aligned Components of Eureka Math

AII-S.IC.2	Algebra II M4 Lesson 1: Chance Experiments, Sample Spaces, and Events
Determine if a value for a sample proportion or sample mean is likely to occur based on a given simulation.	

Making Inferences and Justifying Conclusions

Make inferences and justify conclusions from sample surveys, experiments, and observational studies.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-S.IC.3	Algebra II M4 Lesson 12: Types of Statistical Studies
Recognize the purposes of and differences among surveys, experiments, and observational studies. Explain how randomization relates to each.	Algebra II M4 Lesson 23: Experiments and the Role of Random Assignment
	Algebra II M4 Lesson 24: Differences Due to Random Assignment Alone
	Algebra II M4 Lesson 25: Ruling Out Chance
	Algebra II M4 Lesson 26: Ruling Out Chance
	Algebra II M4 Lesson 27: Ruling Out Chance
	Algebra II M4 Lesson 28: Drawing a Conclusion from an Experiment
	Algebra II M4 Lesson 29: Drawing a Conclusion from an Experiment

Mathematics Learning Standards	Aligned Components of Eureka Math
All-S.IC.4	Algebra II M4 Lesson 25: Ruling Out Chance
Given a simulation model based on a sample proportion or mean, construct the 95% interval centered on the statistic (+/- two standard deviations) and determine if a suggested parameter	Algebra II M4 Lesson 26: Ruling Out Chance
	Algebra II M4 Lesson 27: Ruling Out Chance
	Algebra II M4 Lesson 28: Drawing a Conclusion from an Experiment
	Algebra II M4 Lesson 29: Drawing a Conclusion from an Experiment
All-S.IC.6a	Algebra II M4 Lesson 22: Evaluating Reports Based on Data from a Sample
Use the tools of statistics to draw conclusions from numerical summaries.	Algebra II M4 Lesson 25: Ruling Out Chance
	Algebra II M4 Lesson 26: Ruling Out Chance
	Algebra II M4 Lesson 27: Ruling Out Chance
	Algebra II M4 Lesson 28: Drawing a Conclusion from an Experiment
	Algebra II M4 Lesson 29: Drawing a Conclusion from an Experiment
	Algebra II M4 Lesson 30: Evaluating Reports Based on Data from an Experiment
All-S.IC.6b	Supplemental material is necessary to address this standard.
Use the language of statistics to critique claims from informational texts. For example, causation vs correlation, bias,	
measures of center and spread.	

New York Next Generation

A2 | New York Next Generation Mathematics Learning Standards Correlation to Eureka Math

Conditional Probability and the Rules of Probability

Understand independence and conditional probability and use them to interpret data.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
All-S.CP.1	Algebra II M4 Lesson 1: Chance Experiments, Sample Spaces, and Events
Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").	Algebra II M4 Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 5: Events and Venn Diagrams
	Algebra II M4 Lesson 6: Probability Rules
	Algebra II M4 Lesson 7: Probability Rules
All-S.CP.4	Algebra II M4 Lesson 2: Calculating Probabilities of Events Using Two-Way Tables
Interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and calculate conditional probabilities.	Algebra II M4 Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables

A2 | New York Next Generation Mathematics Learning Standards Correlation to Eureka Math

Conditional Probability and the Rules of Probability

Use the rules of probability to compute probabilities of compound events in a uniform probability model.

New York Next Generation Mathematics Learning Standards	Aligned Components of Eureka Math
AII-S.CP.7	Algebra II M4 Lesson 7: Probability Rules
Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model.	