EUREKA MATH[®]

GREAT	М	INDS	

ABOUT <i>EUREKA MATH</i>	Created by the nonprofit Great Minds, <i>Eureka Math®</i> helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus—a principle tested and proven to be essential in students' mastery of math.
	Teachers and students using <i>Eureka Math</i> find the trademark "Aha!" moments in <i>Eureka Math</i> to be a source of joy and inspiration, lesson after lesson, year after year.
ALIGNED	<i>Eureka Math</i> is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses that demonstrate how each grade of <i>Eureka Math</i> aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u> .
DATA	Schools and districts nationwide are experiencing student academic growth and impressive test scores after using <i>Eureka Math</i> . See their stories and data at <u>greatminds.org/data</u> .
FULL SUITE OF RESOURCES	As a nonprofit, Great Minds offers the <i>Eureka Math</i> curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.
	 The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following: Printed material in English and Spanish Digital resources Professional development

- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

North Carolina Standard Course of Study Mathematics Correlation to Eureka Math®

<u>MATH 3</u>

Eureka Math does not currently offer an integrated curriculum; however, the North Carolina Standard Course of Study for Math 3 is fully covered by the *Eureka Math* curriculum. Standards from this pathway will require the use of *Eureka Math* content from multiple high school courses along with some strategic placement of supplemental materials. A detailed analysis of alignment is provided in the table below.

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
Number and The Complex		Cluster: Use complex numbers in polynomia	al identifies and equations.	
Quantity	Number System	NC.M3.N-CN.9 Use the Fundamental Theorem of Algebra to determine the number and potential types of solutions for polynomial functions.	 Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result Precalculus and Advanced Topics M3 Lesson 1: Solutions to Polynomial Equations Precalculus and Advanced Topics M3 Lesson 2: Does Every Complex Number Have a Square Root? 	
			M3 Lesson 3: Roots of Unity	
Algebra	Seeing Structure in	Cluster: Interpret the structure of expressions.		
	Expressions	 NC.M3.A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Identify and interpret parts of piecewise, absolute value, polynomial, exponential and rational expressions including terms, factors, coefficients, and exponents. b. Interpret expressions composed of multiple parts by viewing one or more of their parts as a single entity to give meaning in terms of a context. 	 Algebra I M1 Topic D: Creating Equations to Solve Problems Algebra I M3 Topic A: Linear and Exponential Sequences Algebra I M3 Lesson 24: Piecewise and Step Functions in Context Algebra I M4 Lessons 1–2: Multiplying and Factoring Polynomial Expressions Algebra I M4 Lesson 3–4: Advanced Factoring Strategies for Quadratic Expressions 	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
			Algebra I M4 Lesson 12: Completing the Square
			Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
			Algebra II M1 Lesson 14: Graphing Factored Polynomials
			Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
			Algebra II M1 Lesson 22: Equivalent Rational Expressions
			Algebra II M1 Lesson 23: Comparing Rational Expressions
			Note: Supplemental material may be necessary to completely address absolute values.
		NC.M3.A-SSE.2	Algebra I M1 Topic B: The Structure of Expressions
		ways to write equivalent expressions.	Algebra I M1 Lesson 17: Equations Involving Factored Expressions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra I M4 Topic A: Quadratic Expressions, Equations, Functions, and Their Connection to Rectangles
			Algebra I M4 Lessons 11–12: Completing the Square
			Algebra II M1 Topic A: Polynomials—From Base Ten to Base X
			Algebra II M1 Lesson 12: Overcoming Obstacles in Factoring
			Algebra II M1 Lesson 13: Mastering Factoring
			Algebra II M3 Lesson 12: Properties of Logarithms
			Algebra II M3 Lesson 14: Solving Logarithmic Equations
			Algebra II M3 Lesson 15: Why Were Logarithms Developed?
		Cluster: Write expressions in equivalent form	ns to solve problems.
		NC.M3.A-SSE.3 Write an equivalent form of an exponential expression by using the properties of exponents to transform expressions to reveal	Algebra I M3 Lesson 23: Newton's Law of Cooling Algebra II M3 Lesson 26: Percent Rate of Change
		rates based on different intervals of the domain.	Algebra II M3 Lesson 27: Modeling with Exponential Functions

Conceptual Category

Domain

Aligned Components of Eureka Math

Arithmetic with Polynomial and Rational Expressions	Cluster: Understand the relationship between zeros and factors of polynomials.			
	ational Expressions	NC.M3.A-APR.2 Understand and apply the Remainder Theorem.	Algebra II M1 Lesson 19: The Remainder Theorem	
		NC.M3.A-APR.3 Understand the relationship among factors of a polynomial expression, the solutions of a polynomial equation and the zeros of a polynomial function.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, f(x) = a(x - m)(x - n) Algebra I M4 Lesson 15: Using the Quadratic Formula Algebra II M1 Lesson 11: The Special Role of Zero in Factoring Algebra II M1 Lesson 14: Graphing Factored Polynomials	
		Cluster: Rewrite rational expressions.		
		NC.M3.A-APR.6 Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$.	Algebra II M1 Lesson 4: Comparing Methods—Long Division, Again? Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring—What If There Is a Remainder? Algebra II M1 Lesson 22: Equivalent Rational Expressions	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions
			Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions
		NC.M3.A-APR.7	Algebra II M1 Lesson 22: Equivalent Rational
		Understand the similarities between arithmetic with rational expressions and arithmetic with rational numbers.	Expressions Algebra II M1 Lesson 23: Comparing Rational Expressions
		a. Add and subtract two rational expressions, a(x), and $b(x)$, where the denominators of	Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions
		both a(x), and b(x), are linear expressions.b. Multiply and divide two rational	Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions
		expressions.	Precalculus and Advanced Topics M3 Lesson 10: The Structure of Rational Expressions
			Precalculus and Advanced Topics M3 Lesson 11: Rational Functions
	Creating	Cluster: Create equations that describe num	bers or relationships.
	Lquations	NC.M3.A-CED.1	Algebra I M1 Lesson 18: Equations Involving
		Create equations and inequalities in one variable that represent absolute value, polynomial, exponential, and rational relationships and use them to solve problems algebraically and graphically.	Algebra I M1 Topic D: Creating Equations to Solve Problems

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
			Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
			Algebra I M5 Lesson 2: Analyzing a Data Set
			Algebra I M5 Lesson 6: Modeling a Context from Data
			Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description
			Algebra II M1 Lessons 20–21: Modeling Riverbeds with Polynomials
			Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
			Algebra II M3 Lesson 7: Bacteria and Exponential Growth
			Algebra II M3 Lesson 26: Percent Rate of Change
			Algebra II M3 Lesson 27: Modeling with Exponential Functions
		NC.M3.A-CED.2	Algebra I M1 Lesson 5: Two Graphing
		Create and graph equations in two variables to	Stories
		represent absolute value, polynomial, exponential and rational relationships between	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
		quantities.	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations
			Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
			Algebra I M1 Lesson 28: Federal Income Tax
			Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, f(x) = a(x - m)(x - n)
			Algebra I M4 Lesson 12: Completing the Square
			Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
			Algebra I M4 Lessons 23–24: Modeling with Quadratic Functions
			Algebra I M5: A Synthesis of Modeling with Equations and Functions
			Algebra II M1 Lesson 1: Successive Differences in Polynomials
			Algebra II M1 Lessons 16–17: Modeling with Polynomials—An Introduction
			Algebra II M1 Lessons 20–21: Modeling Riverbeds with Polynomials
			Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		NC.M3.A-CED.3 Create systems of equations and/or inequalities to model situations in context.	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"
			Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
			Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
			Algebra I M1 Lesson 27: Recursive Challenge Problem—The Double and Add 5 Game
			Algebra I M3 Topic B: Functions and Their Graphs
			Algebra I M3 Lesson 24: Piecewise and Step Functions in Context
			Algebra II M1 Lessons 20–21: Modeling Riverbeds with Polynomials
			Algebra II M3 Topic E: Geometric Series and Finance

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
	Reasoning with	Cluster: Understand solving equations as a pro	ocess of reasoning and explain the reasoning.
Equ	Equations and Inequalities	NC.M3.A-REI.1 Justify a solution method for equations and explain each step of the solving process using mathematical reasoning.	Algebra I M1 Lesson 17: Equations Involving Factored Expressions Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra II M1 Lesson 26: Solving Rational Equations Algebra II M1 Lesson 28: A Focus on Square Roots
		NC.M3.A-REI.2 Solve and interpret one variable rational equations arising from a context, and explain how extraneous solutions may be produced.	Algebra II M1 Lesson 22: Equivalent Rational Expressions Algebra II M1 Lesson 23: Comparing Rational Expressions Algebra II M1 Lesson 26: Solving Rational Equations Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
	Reasoning with	Cluster: Represent and solve equations and inequalities graphically.	
	Equations and Inequalities	NC.M3.A-REI.11 Extend the understanding that the <i>x</i> -coordinates of the points where the graphs of two equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$ and approximate solutions using a graphing technology or successive approximations with a table of values.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring—What If There Are No Real Number Solutions? Algebra II M3 Lesson 24: Solving Exponential Equations

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
Functions Interpreting Fractions	Cluster: Understand the concept of a function and use function notation.		
	Fractions	 NC.M3.F-IF.1 Extend the concept of a function by recognizing that trigonometric ratios are functions of angle measure. NC.M3.F-IF.2 Use function notation to evaluate piecewise 	Algebra II M2: Trigonometric Functions Algebra I M3 Lesson 24: Piecewise and Step Functions in Context
		and interpret statements that use function notation in terms of a context. Cluster: Interpret functions that arise in app	lications in terms of the context.
		NC.M3.F-IF.4 Interpret key features of graphs, tables, and verbal descriptions in context to describe functions that arise in applications relating two quantities to include periodicity and discontinuities.	Algebra I M3 Lesson 13: Interpreting the Graph of a FunctionAlgebra I M3 Lesson 14: Linear and Exponential Models—Comparing Growth RatesAlgebra I M3 Topic D: Using Functions and Graphs to Solve ProblemsAlgebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic FunctionsAlgebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$

Conceptual Category	Domain Standards for Mathematical Content		Aligned Components of Eureka Math	
			Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables	
			Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$	
			Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways	
			Algebra I M5: A Synthesis of Modeling with Equations and Functions	
			Algebra II M1 Lessons 16–17: Modeling with Polynomials—An Introduction	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
		Cluster: Analyze functions using different representations.		
		NC.M3.F-IF.7 Analyze piecewise, absolute value, polynomials, exponential, rational, and trigonometric functions (sine and cosine) using different representations to show key features of the graph, by hand in simple cases and using technology for more complicated cases, including: domain and range; intercepts; intervals where the function is increasing, decreasing, positive, or negative; rate of change; relative maximums and minimums; symmetries; end behavior; period; and discontinuities.	 Algebra I M3 Topic C: Transformations of Functions Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lesson 14: Graphing Factored Polynomials Algebra II M1 Lesson 15: Structure in Graphs 	
			Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction Algebra II M2 Lesson 8: Graphing the Sine and Cosine Functions Algebra II M2 Lesson 11: Transforming the Graph of the Sine Function Algebra II M2 Lesson 12: Ferris Wheels— Using Trigonometric Functions to Model	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
			Algebra II M3 Lesson 16: Rational and Irrational Numbers	
			Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions	
			Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions	
			Algebra II M3 Lesson 33: The Million Dollar Problem	
			Precalculus and Advanced Topics M3 Topic B: Rational Functions and Composition of Functions	
			Precalculus and Advanced Topics M4 Lesson 11: Revisiting the Graphs of the Trigonometric Functions	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
		NC.M3.F-IF.9 Compare key features of two functions using different representations by comparing properties of two different functions, each with a different representation (symbolically, graphically, numerically in tables, or by verbal descriptions).	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Algebra II M3 Lesson 27: Modeling with Exponential Functions Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited Algebra II M3 Topic E: Geometric Series and Finance	
	Building	Cluster: Build a function that models a relationship between two quantities.		
	runctions	 NC.M3.F-BF.1 Write a function that describes a relationship between two quantities. a. Build polynomial and exponential functions with real solution(s) given a graph, a description of a relationship, or ordered pairs (include reading these from a table). b. Build a new function, in terms of a context, by combining standard function types using arithmetic operations. 	Algebra I M3: Linear and Exponential Functions Algebra I M5: A Synthesis of Modeling with Equations and Functions Algebra II M1 Lesson 1: Successive Differences in Polynomials Algebra II M2 Lesson 12: Ferris Wheels— Using Trigonometric Functions to Model Cyclical Behavior Algebra II M3 Lesson 5: Irrational Exponents Algebra II M3 Lesson 6: Euler's Number, <i>e</i> Algebra II M3 Lesson 7: Bacteria and Exponential Growth	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra II M3 Lesson 16: Rational and Irrational Numbers
			Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
			Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
			Algebra II M3 Lesson 33: The Million Dollar Problem
			Precalculus and Advanced Topics M3 Topic B: Rational Functions and Composition of Functions
			Precalculus and Advanced Topics M4 Lesson 11: Revisiting the Graphs of the Trigonometric Functions
		Cluster: Build new functions from existing f	unctions.
		NC.M3.F-BF.3	Algebra I M3 Topic C: Transformations of
		Extend an understanding of the effects on the graphical and tabular representations of a function when replacing $f(x)$ with $k \cdot f(x)$, $f(x) + k$, $f(x + k)$ to include $f(k \cdot x)$ for specific values	Algebra I M4 Lesson 19: Translating Graphs of Functions
		of <i>k</i> (both positive and negative).	Shrinking Graphs of Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
			Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
			Algebra II M2 Lesson 11: Transforming the Graph of the Sine Function
			Algebra II M2 Lesson 12: Ferris Wheels— Using Trigonometric Functions to Model Cyclical Behavior
			Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
			Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions
		NC.M3.F-BF.4 Find an inverse function.	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
		a. Understand the inverse relationship between exponential and logarithmic, quadratic and	Algebra II M3 Lesson 8: The "WhatPower" Function
		square root, and linear to linear functions and use this relationship to solve problems using tables, graphs, and equations.	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
		 Determine if an inverse function exists by analyzing tables, graphs, and equations. C. If an inverse function exists for a linear, 	Algebra II M3 Lesson 24: Solving Exponential Equations
		quadratic and/or exponential function, f , represent the inverse function, f^{-1} , with a table, graph, or equation and use it to solve problems in terms of a context.	Precalculus and Advanced Topics M3 Topic C: Inverse Functions

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
	Linear, Quadratic, and Exponential Models	Cluster: Construct and compare linear and exponential models and solve problems.		
		NC.M3.F-LE.3 Compare the end behavior of functions using their rates of change over intervals of the same length to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a polynomial function.	Algebra I M3 Lesson 5: The Power of Exponential Growth	
			Algebra I M3 Lesson 6: Exponential Growth—U.S. Population and World Population Algebra I M3 Lesson 14: Linear and	
			Exponential Models—Comparing Growth Rates	
			Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again	
		NC.M3.F-LE.4	Algebra II M3 Topic B: Logarithms	
		Use logarithms to express the solution to $ab^{ct} = d$ where a, b, c , and d are numbers and evaluate the logarithm using technology.	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions	
			Algebra II M3 Topic D: Using Logarithms in Modeling Situations	
			Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
	Trigonometric	Cluster: Extend the domain of trigonometric functions using the unit circle.		
	runctions	 NC.M3.F-TF.1 Understand radian measure of an angle as: The ratio of the length of an arc on a circle subtended by the angle to its radius. A dimensionless measure of length defined by the quotient of arc length and radius that is a real number. The domain for trigonometric functions. 	Algebra II M2 Lesson 5: Extending the Domain of Sine and Cosine to All Real Numbers Algebra II M2 Lesson 9: Awkward! Who Chose the Number 360, Anyway?	
		 NC.M3.F-TF.2 Build an understanding of trigonometric functions by using tables, graphs and technology to represent the cosine and sine functions. a. Interpret the sine function as the relationship between the radian measure of an angle formed by the horizontal axis and a terminal ray on the unit circle and its <i>y</i> coordinate. b. Interpret the cosine function as the relationship between the radian measure of an angle formed by the horizontal axis and a terminal ray on the unit circle and its <i>y</i> coordinate. b. Interpret the cosine function as the relationship between the radian measure of an angle formed by the horizontal axis and a terminal ray on the unit circle and its <i>x</i> coordinate. 	Algebra II M2 Lesson 4: From Circle-ometry to Trigonometry Algebra II M2 Lesson 5: Extending the Domain of Sine and Cosine to All Real Numbers	

Conceptual	Conceptu	al
------------	----------	----

Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
		Cluster: Model periodic phenomena with trig	onometric functions.	
		NC.M3.F-TF.5 Use technology to investigate the parameters, <i>a</i> , <i>b</i> , and <i>h</i> of a sine function, $f(x) = a \cdot sin(b \cdot x) + h$, to represent periodic phenomena and interpret key features in terms of a context.	Algebra II M2 Lesson 11: Transforming the Graph of the Sine Function Algebra II M2 Lesson 12: Ferris Wheels— Using Trigonometric Functions to Model Cyclical Behavior Algebra II M2 Lesson 13: Tides, Sound Waves, and Stock Markets	
			Precalculus and Advanced Topics M4 Lesson 6: Waves, Sinusoids, and Identities	
Geometry	Congruence	Prove geometric theorems.		
		NC.M3.G-CO.10 Verify experimentally properties of the centers of triangles (centroid, incenter, and circumcenter).	Geometry M1 Lesson 23: Base Angles of Isosceles Triangles Geometry M1 Topic E: Proving Properties of Geometric Figures Geometry M1 Topic G: Axiomatic Systems <i>Note: Supplemental material may be</i> <i>necessary to completely address this</i> <i>standard.</i>	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
		 NC.M3.G-CO.11 Prove theorems about parallelograms. Opposite sides of a parallelogram are congruent. Opposite angles of a parallelogram are congruent. Diagonals of a parallelogram bisect each other. If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle. 	Geometry M1 Lesson 28: Properties of Parallelograms Geometry M1 Topic G: Axiomatic Systems	
		NC.M3.G-CO.14 Apply properties, definitions, and theorems of two-dimensional figures to prove geometric theorems and solve problems.	Geometry M1: Congruence, Proof, and Constructions	
	Circles	Cluster: Understand and apply theorems about circles.		
		NC.M3.G-C.2 Understand and apply theorems about circles. Understand and apply theorems about relationships with angles and circles, including central, inscribed and circumscribed angles. Understand and apply theorems about relationships with line segments and circles including, radii, diameter, secants, tangents and chords.	Geometry M5: Circles With and Without Coordinates	

Со	nc	ept	tua	al I
~~				

Category Dom	ain Standards for Mathematical Content	Aligned Components of Eureka Math	
	NC.M3.G-C.5	Geometry M5 Topic B: Arcs and Sectors	
	Using similarity, demonstrate that the length an arc, s , for a given central angle is proportional to the radius, r , of the circle. Define radian measure of the central angle a the ratio of the length of the arc to the radius the circle, s/r . Find arc lengths and areas of sectors of circles.	of as a of	
Expressi Geometri Dremontia	ng Cluster: Translate between the geometric	Cluster: Translate between the geometric description and the equation for a conic section.	
Equation	s NC.M3.G-GPE.1	Geometry M5 Topic D: Equations for Circles	
	Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	and Their Tangents	
Geometric	Cluster: Explain volume formulas and us	Cluster: Explain volume formulas and use them to solve problems.	
Dimensio	NC.M3.G-GMD.3 Use the volume formulas for prisms, cylinde pyramids, cones, and spheres to solve problems.	Geometry M3: Extending to Three Dimensions	

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math
		Cluster: Visualize relationships between two-dimensional and three-dimensional objects.	
		NC.M3.G-GMD.4 Identify the shapes of two-dimensional cross- sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.	Geometry M3: Extending to Three Dimensions
	Modeling with	Cluster: Apply geometric concepts in modeling situations.	
	Geometry	 NC.M3.G-MG.1 Apply geometric concepts in modeling situations Use geometric and algebraic concepts to solve problems in modeling situations: Use geometric shapes, their measures, and their properties, to model real-life objects. Use geometric formulas and algebraic functions to model relationships. Apply concepts of density based on area and volume. Apply geometric concepts to solve design and optimization problems. 	Geometry M2 Lesson 19: Families of Parallel Lines and the Circumference of the Earth Geometry M2 Lesson 20: How Far Away Is the Moon? Geometry M3 Lesson 5: Three-Dimensional Space Geometry M3 Lesson 6: General Prisms and Cylinders and Their Cross-Sections Geometry M3 Lesson 11: The Volume Formula of a Pyramid and Cone Geometry M3 Lesson 12: The Volume Formula of a Sphere Note: Supplemental material may be necessary to completely address optimization problems.

Conceptual Category	Domain	Standards for Mathematical Content	Aligned Components of Eureka Math	
Statistics and Probability	Making Inference and Justifying Conclusions	Cluster: Understand and evaluate random processes underlying statistical experiments.		
		NC.M3.S-IC.1 Understand the process of making inferences about a population based on a random sample from that population.	Algebra II M4 Topic C: Drawing Conclusions Using Data from a Sample	
		Cluster: Make inference and justify conclusions from sample surveys, experiments, and observational studies.		
		NC.M3.S-IC.3 Recognize the purposes of and differences between sample surveys, experiments, and observational studies and understand how randomization should be used in each.	Algebra II M4 Lesson 12: Types of Statistical Studies Algebra II M4 Topic D: Drawing Conclusions Using Data from an Experiment	
		NC.M3.S-IC.4 Use simulation to understand how samples can be used to estimate a population mean or proportion and how to determine a margin of error for the estimate.	Algebra II M4 Topic C: Drawing Conclusions Using Data from a Sample	
		NC.M3.S-IC.5 Use simulation to determine whether observed differences between samples from two distinct populations indicate that the two populations are actually different in terms of a parameter of interest.	Algebra II M4 Topic D: Drawing Conclusions Using Data from an Experiment	

NC.M3.S-IC.6	Algebra II M4 Lesson 22: Evaluating Reports
Evaluate articles and websites that report data	Based on Data from a Sample
by identifying the source of the data, the	Algebra II M4 Topic D: Drawing Conclusions
design of the study, and the way the data are graphically displayed.	Using Data from an Experiment