About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/ math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Mathematical Process Standards	Aligned Components of Eureka Math
MPS.PS.1 Make sense of problems and persevere in solving them strategically. MPS.RC.1	Lessons in every module engage students in mathematical processes. These are designated in the Module Overview and labeled in lessons. For example:
Explain ideas using precise and contextually appropriate mathematical language, tools, and models.	A STORY OF FUNCTIONS Lesson 8 M4 ALGEBRA I
MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Problem Set Sample Solutions MP.3 1. Khaya stated that every y-value of the graph of a quadratic function has two different x-values. Do you agree or disagree with Khaya? Explain your answer. The graph of a quadratic function has two different x-values for each y-value except at the vertex where there is only one. 2. Is it possible for the graphs of two different quadratic functions to each have $x = -3$ as its line of symmetry and
MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	Students should sketch two graphs with vertex at $(-3,5)$ and different x-intercepts.
MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	

Data, Probability, and Statistical Reasoning

South Carolina

A1.DPSR.1 Use statistical reasoning to summarize, represent, and interpret data on two categorical and quantitative variables.

College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.DPSR.1.1	Algebra I M2 Topic C: Categorical Data on Two Variables
Summarize categorical data in two-way frequency tables, interpret relative frequencies in real-world situations, and informally determine possible associations and trends in the data.	
A1.DPSR.1.2	Algebra I M2 Lesson 12: Relationships Between Two Numerical Variables
Summarize quantitative data in a table and on a scatter plot and describe how the variables are associated. Limit to linear data.	
A1.DPSR.1.3	Algebra I M2 Lesson 14: Modeling Relationships with a Line
Find a linear function for a scatter plot that suggests a linear association.	Algebra I M2 Lesson 15: Interpreting Residuals from a Line
	Algebra I M5 Lesson 7: Modeling a Context from Data
A1.DPSR.1.4	Algebra I M2 Lesson 19: Interpreting Correlation
For linear associations, use technology to determine the correlation coefficient, evaluate the strength of the association, and find the line of best fit.	Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables
	Algebra I M5 Lesson 7: Modeling a Context from Data

Data, Probability, and Statistical Reasoning

A1.DPSR.2 Analyze and interpret models for two categorical and quantitative variables.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.DPSR.2.1	Algebra I M2 Topic C: Categorical Data on Two Variables
Use two-way frequency tables to make inferences and interpret the data in terms of real-world or mathematical situations.	
A1.DPSR.2.2	Algebra I M2 Lesson 14: Modeling Relationships with a Line
Interpret the slope and the intercept of a linear model in the context of the data.	
A1.DPSR.2.3	Algebra I M2 Lesson 14: Modeling Relationships with a Line
Use a linear model to interpolate and extrapolate unknown values close to the data set	Algebra I M2 Lesson 15: Interpreting Residuals from a Line
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Supplemental data is necessary to address using a model to extrapolate unknown values close to the data set.

Measurement, Geometry, and Spatial Reasoning

A1.MGSR.1 Use geometric concepts and measurement opportunities to model mathematical and real-world situations.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.MGSR.1.1	Algebra I M1 Lesson 3: Graphs of Exponential Functions
Identify any limitations specific to a	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
real-world situation.	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Lesson 1: Analyzing a Graph
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Numerical Reasoning

A1.NR.1 Represent all points on the number line as irrational and rational numbers in the real number system.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.NR.1.1	G8 M7 Lesson 4: Simplifying Square Roots
Rewrite numerical and algebraic expressions of irrational and rational numbers involving radicals, including addition, subtraction, multiplication, and division. Limit to square and cube roots.	Geometry M2 Lesson 22: Multiplying and Dividing Expressions with Radicals Geometry M2 Lesson 23: Adding and Subtracting Expressions with Radicals Supplemental material is necessary to address rewriting numerical and algebraic cube roots.

Numerical Reasoning

cube roots.

A1.NR.2 Represent exponents and radical expressions in different ways.

South Carolina
College- and Career-Ready
Mathematics StandardsAligned Components of Eureka MathA1.NR.2.1Algebra II M3 Lesson 3: Rational Exponents
and radical expressions of irrational
and rational numbers. Use properties
of addition, subtraction, multiplication,
and division to simplify radical and
rational expressions. Limit to square andAlgebra II M3 Lesson 3: Rational Exponents
Algebra II M3 Lesson 4: Properties of Exponents and Radicals

Patterns, Algebra, and Functional Reasoning

A1.PAFR.1 Transform and/or solve equations and expressions in one variable that model real-world and mathematical situations, interpret the solutions, and determine whether they are reasonable.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.PAFR.1.1	Algebra I M1 Lesson 10: True and False Equations
Transform an equation in one variable to create new equations that have the same solution as the original and justify the steps taken.	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities
	Algebra I M1 Lesson 12: Solving Equations
	Algebra I M1 Lesson 13: Some Potential Dangers when Solving Equations
	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"
	Algebra I M1 Lesson 17: Equations Involving Factored Expressions
	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
	Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra

A1.PAFR.1.2 Solve literal equations and formulas for a specified variable including equations and formulas that arise in a variety of disciplines.	Algebra I M1 Lesson 19: Rearranging Formulas
A1.PAFR.1.3 Solve mathematical and real-world situations using linear, quadratic, exponential (same bases), and linear absolute value equations in one variable.	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra I M1 Lesson 19: Rearranging Formulas Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra II M3 Lesson 7: Bacteria and Exponential Growth Supplemental material is necessary to address solving situations with absolute value equations.
A1.PAFR.1.4 Add, subtract, and multiply polynomials with initial terms up to a degree of 2.	Algebra I M1 Lesson 8: Adding and Subtracting Polynomials Algebra I M1 Lesson 9: Multiplying Polynomials Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions

Patterns, Algebra, and Functional Reasoning

A1.PAFR.2 Create, solve, and transform equations and inequalities in two or more variables to represent relationships between quantities and graph the equations on coordinate axes using appropriate labels, units, and scales.

South Carolina College- and Career-Ready Mathematics Standards

_

Mathematics Standards	Aligned Components of Eureka Math
A1.PAFR.2.1	G8 M4 Lesson 19: The Graph of a Linear Equation in Two Variables Is a Line
Transform linear, quadratic, exponential, and linear absolute value functions to equivalent forms to identify slope and	G8 M4 Lesson 21: Some Facts About Graphs of Linear Equations in Two Variables
	G8 M4 Lesson 23: The Defining Equation of a Line
	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
(if any) for quadratic and linear absolute	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
value, and y-intercept for exponential.	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Supplemental material is necessary to address transforming exponential functions to identify the <i>y</i> -intercepts.
A1.PAFR.2.2	Algebra I M4 Lesson 5: The Zero Product Property
Solve quadratic equations by completing	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
the square, factoring, and the quadratic formula, explaining the connection between the zeros of the function derived from the equation, its linear factors (if it factors), the <i>x</i> -intercepts of its graph (if they exist), and the solutions (if any) to the corresponding quadratic equation.	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
	Algebra I M4 Lesson 11: Completing the Square
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square
	Algebra I M4 Lesson 14: Deriving the Quadratic Formula
	Algebra I M4 Lesson 15: Using the Quadratic Formula

A1.PAFR.2.3	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
Solve and graph linear, quadratic, exponential, and linear absolute	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 7: Exponential Decay
symbolic, and/or verbal forms using	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
intercepts, domain and range, intervals	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
of increasing and decreasing, vertex	Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
and symmetry, and interpret these	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
in terms of mathematical and real-world	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
situations.	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Lesson 1: Analyzing a Graph
	Algebra I M5 Lesson 3: Analyzing a Verbal Description
	Algebra I M5 Topic B: Completing the Modeling Cycle
	Supplemental material is necessary to address absolute value equations and solving equations given in tabular form.
A1.PAFR.2.4	Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables
Create, solve, and graph linear inequalities in two variables.	

A1.PAFR.2.5 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Algebra I M3 Lesson 2: Recursive Formulas for Sequences Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences
A1.PAFR.2.6 Create symbolic representations of linear and exponential functions, including arithmetic and geometric sequences, given graphs, verbal descriptions, and tables.	Algebra I M3 Topic A: Linear and Exponential Sequences Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again Algebra I M3 Lesson 22: Modeling an Invasive Species Population Algebra I M3 Lesson 23: Newton's Law of Cooling Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 3: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 7: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
A1.PAFR.2.7 Use graphs to obtain exact and/or approximate solutions of equations, inequalities, and systems of linear equations in two variables (given or obtained by using technology).	Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra I M4 Lesson 24: Modeling with Quadratic Functions

A1.PAFR.2.8 Solve an equation of the form f(x) = g(x) graphically by identifying the x-coordinate(s) of the point(s) of intersection of the graphs of $y = f(x)$ and $y = g(x)$.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
A1.PAFR.2.9 Solve systems of linear equations algebraically and graphically.	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
A1.PAFR.2.10 Analyze the growth/decay rate between linear and exponential functions specifically between consecutive integers.	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates

Patterns, Algebra, and Functional Reasoning

A1.PAFR.3 Represent and interpret functions symbolically and graphically.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.PAFR.3.1	Algebra I M3 Lesson 1: Integer Sequences—Should You Believe in Patterns?
Recognize that $f(x)$ denotes the output	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
of function f that corresponds to the input x and this corresponds to the set	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
of all the ordered pairs (x, y) that satisfy	Algebra I M3 Lesson 11: The Graph of a Function
the equation $y = f(x)$ both tabularly and graphically.	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
A1.PAFR.3.2	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
Use the definition of a function	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
to analyze the domain and range	Algebra I M3 Lesson 11: The Graph of a Function
mapping, table, verbal, and/or symbolic	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
description and, where applicable, using interval and set notation.	Supplemental material is necessary to address interval notation.
A1.PAFR.3.3	Algebra I M3 Lesson 13: Interpreting the Graph of a Function
Translate among graphical, tabular,	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
verbal, and symbolic representations in function notation, to identify intercepts, intervals where the function is increasing, decreasing, constant, maximums and minimums, and symmetries and explain their meanings in real-world and mathematical situations.	Algebra I M3 Lesson 23: Newton's Law of Cooling
	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.PAFR.3.3 continued	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
A1.PAFR.3.4	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Interpret how lead coefficients impact the shape of a function's graph.	Algebra I M3 Lesson 20: Four Interesting Transformations of Functions
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$

Patterns, Algebra, and Functional Reasoning

A1.PAFR.4 Reason with parent functions in varying representations to find families of functions that all have similar distinguishing attributes common to the family and use common characteristics to aid in rewriting and identifying linear, linear absolute value, quadratic, and exponential functions.

South Carolina College- and Career-Ready Mathematics Standards

A1.PAFR.4.1	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Describe the effect of the transformations $kf(x)$, f(x) + k, $f(x - k)$, and combinations of such transformations on the graph of parent function $y = f(x)$ for any real number k; find the value of k given the graphs; and write the equation of a transformed parent function given its graph.	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 19: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 20: Four Interesting Transformations of Functions
	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
A1.PAFR.4.2	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
A1.PAFR.4.2 Given a real-world or mathematical	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 4: Modeling a Context from a Graph
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra I M5 Lesson 5: Modeling from a Sequence
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 7: Modeling a Context from Data
A1.PAFR.4.2 Given a real-world or mathematical situation, determine the parent graph that best models the situation.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 4: Modeling a Context from a Graph Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 7: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from Data

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A1.PAFR.4.3 Given different representations of two different functions, compare key features including intercepts, domain and range, intervals of increasing and decreasing, constant, average rate of change, and maximum and minimum values.	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways Supplemental material is necessary to fully address this standard.