About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/ math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Mathematical Process Standards	Aligned Components of Eureka Math
MPS.PS.1 Make sense of problems and persevere in solving them strategically. MPS.RC.1 Explain ideas using precise and contextually appropriate	Lessons in every module engage students in mathematical processes. These are designated in the Module Overview and labeled in lessons. For example:
mathematical language, tools, and models.	ALGEBRA II Opening Exercise
MPS.C.1 Demonstrate a deep and flexible conceptual understanding of mathematical ideas, operations, and relationships while making real-world connections.	Suppose a Ferris wheel has a radius of 50 feet. We will measure the height of a passenger car that starts in the 3 o'clock position with respect to the horizontal line through the center of the wheel. That is, we consider the height of the passenger car at the outset of the problem (that is, after a 0" rotation) to be 0 feet. a. Mark the diagram to show the position of a passenger car at 30-degree intervals as it rotates counterclockwise around the Ferris wheel.
MPS.AJ.1 Use critical thinking skills to reason both abstractly and quantitatively.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MPS.SP.1 Identify and apply regularity in repeated reasoning to make generalizations.	

Data, Probability, and Statistical Reasoning

A2P.DPSR.1 Understand independence and conditional probability and use them to interpret data.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.DPSR.1.1	Algebra II M4 Lesson 1: Chance Experiments, Sample Spaces, and Events
Describe events as subsets of a sample space using characteristics or categories of the outcomes, or as <i>unions, intersections,</i> or <i>complements</i> <i>of other events.</i>	Algebra II M4 Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 5: Events and Venn Diagrams
	Algebra II M4 Lesson 6: Probability Rules
	Algebra II M4 Lesson 7: Probability Rules
A2P.DPSR.1.2	Algebra II M4 Lesson 6: Probability Rules
Explain whether two events, A and B , are independent if and only if the probability of A and B occurring together is the product of their probabilities and use this characterization to determine if they are independent.	

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.DPSR.1.3	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using
Determine whether the conditional	Two-Way Tables
probability of A given B as P(A and B)/P(B) and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B in mathematical and real-world situations.	Algebra II M4 Lesson 6: Probability Rules
A2P.DPSR.1.4	Algebra II M4 Lesson 2: Calculating Probabilities of Events Using Two-Way Tables
Recognize and explain the concepts of conditional probability and independence.	Algebra II M4 Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
	Algebra II M4 Lesson 6: Probability Rules

Data, Probability, and Statistical Reasoning

A2P.DPSR.2 Use the rules of probability to compute probabilities of compound events in a uniform probability model.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.DPSR.2.1	Algebra II M4 Lesson 3: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> and interpret the answer in terms of the model.	Algebra II M4 Lesson 4: Calculating Conditional Probabilities and Evaluating Independence Using Two-Way Tables
A2P.DPSR.2.2	Algebra II M4 Lesson 7: Probability Rules
Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B) and interpret the answer in terms of the model.	
A2P.DPSR.2.3	Precalculus and Advanced Topics M5 Lesson 1: The General Multiplication Rule
Apply the general Multiplication	Precalculus and Advanced Topics M5 Lesson 13: Games of Chance and Expected Value
<i>Rule</i> in a uniform probability model, $P(A \text{ and } B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$	Precalculus and Advanced Topics M5 Lesson 14: Games of Chance and Expected Value
$P(A \text{ and } B) = P(A) \cdot P(B A) = P(B) \cdot P(A B)$ and interpret the answer in terms of the model.	Precalculus and Advanced Topics M5 Lesson 15: Using Expected Values to Compare Strategies
A2P.DPSR.2.4	Precalculus and Advanced Topics M5 Lesson 2: Counting Rules–The Fundamental Counting Principle
Use permutations and combinations	and Permutations
to determine the number of possible	Precalculus and Advanced Topics M5 Lesson 3: Counting Rules–Combinations
outcomes in a sample space.	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities

Measurement, Geometry, and Spatial Reasoning

A2P.MGSR.1 Explore and analyze sine and cosine functions using the unit circle, right triangle definitions, and models of periodic phenomena.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.MGSR.1.1	Algebra II M2 Lesson 1: Ferris Wheels—Tracking the Height of a Passenger Car
Build the unit circle for sine and cosine functions using right triangle definitions.	Algebra II M2 Lesson 2: The Height and Co-Height Functions of a Ferris Wheel
	Algebra II M2 Lesson 3: The Motion of the Moon, Sun, and Stars–Motivating Mathematics
	Algebra II M2 Lesson 4: From Circle-ometry to Trigonometry
	Algebra II M2 Lesson 5: Extending the Domain of Sine and Cosine to All Real Numbers
A2P.MGSR.1.2	Algebra II M2 Lesson 8: Graphing the Sine and Cosine Functions
Use models of periodic phenomena to evaluate and analyze the graph of sine and cosine functions.	Algebra II M2 Lesson 10: Basic Trigonometric Identities from Graphs

Numerical Reasoning

A2P.NR.1 Recognize that the complex number system extends the real number system to allow for solution to all polynomial equations.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.NR.1.1	Algebra II M1 Lesson 37: A Surprising Boost from Geometry
Understand that there is an imaginary unit <i>i</i> such that $i^2 = -1$ and explain the structure of a complex number as $a + bi$, where <i>a</i> and <i>b</i> are real.	

South Carolina College- and Career-Ready Mathematics Standards

Aligned Components of Eureka Math

A2P.NR.1.2	Algebra II M1 Lesson 37: A Surprising Boost from Geometry
Add, subtract, and multiply complex numbers.	

Numerical Reasoning

A2P.NR.2 Represent and manipulate data using matrices.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.NR.2.1	Precalculus and Advanced Topics M2 Lesson 2: Networks and Matrix Arithmetic
Perform operations with matrices including addition, subtraction, and scalar multiplication.	Precalculus and Advanced Topics M2 Lesson 11: Matrix Addition Is Commutative

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.1 Explore and analyze quadratic and polynomial functions and inequalities and use them to model real-world situations.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.PAFR.1.1	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
Graph, identify roots, and analyze quadratic functions in mathematical and real-world situations.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 12: Completing the Square Algebra I M4 Lesson 15: Using the Quadratic Formula

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.PAFR.1.1 continued	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations
A2P.PAFR.1.2	Supplemental material is necessary to address this standard.
Solve quadratic inequalities that model mathematical and real-world situations.	
A2P.PAFR.1.3	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
Graph and analyze polynomial functions	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
in mathematical and real-world situations.	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
	Algebra II M1 Lesson 40: Obstacles Resolved–A Surprising Result
A2P.PAFR.1.4	Supplemental material is necessary to address this standard.
Solve polynomial inequalities that model mathematical and real-world situations.	
A2P.PAFR.1.5	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
Recognize perfect squares and perfect cubes and use them to describe the structure of polynomials.	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.2 Explore and analyze rational and radical functions and use them to model real-world phenomena.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.PAFR.2.1	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
Graph rational and radical functions	Algebra I M4 Lesson 19: Translating Graphs of Functions
and describe their key features. Limit	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
to square roots and cube roots only.	Supplemental material is necessary to address describing key features by using interval notation.
A2P.PAFR.2.2	Algebra II M1 Lesson 4: Comparing Methods–Long Division, Again?
Perform arithmetic operations on rational expressions, including problems in context, and express rational expressions in irreducible form.	Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring–What If There Is a Remainder?
	Algebra II M1 Lesson 22: Equivalent Rational Expressions
	Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions
	Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions
	Precalculus and Advanced Topics M3 Lesson 10: The Structure of Rational Expressions
A2P.PAFR.2.3	Algebra II M1 Lesson 22: Equivalent Rational Expressions
Create and solve rational and radical equations in one variable, including those that model real-life situations, and verify solutions to identify extraneous solutions if they appear.	Algebra II M1 Lesson 23: Comparing Rational Expressions
	Algebra II M1 Lesson 26: Solving Rational Equations
	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
	Algebra II M1 Lesson 28: A Focus on Square Roots
	Algebra II M1 Lesson 29: Solving Radical Equations
	Algebra II M1 Lesson 29: Solving Radical Equations

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.3 Explore and analyze exponential functions and use them to model real-world phenomena.

Aligned Components of Eureka Math
Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
Algebra I M3 Lesson 7: Exponential Decay
Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
Algebra II M3 Topic D: Using Logarithms in Modeling Situations
Algebra II M3 Topic E: Geometric Series and Finance
Supplemental material is necessary to address finding the sum of terms in arithmetic sequences.

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.4 Reason with parent functions to find families of functions that all have similar distinguishing attributes common to the family and use common characteristics to aid in rewriting and identifying functions.

South Carolina
College- and Career-Ready
Mathematics Standards

Aligned Components of Eureka Math

A2P.PAFR.4.1	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $kf(x)$, $f(x) + k$, $f(x - k)$, f(kx) for any real number k including multiple transformations; write an equation of a transformed parent function given its graph. Extend to equations involving rational, polynomial, radical, exponential, and piecewise.	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions Algebra I M3 Lesson 19: Four Interesting Transformations of Functions Algebra I M3 Lesson 20: Four Interesting Transformations of Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.5 Explore and analyze piecewise functions and linear absolute value inequalities and use them to model real-world phenomena.

South Carolina College- and Career-Ready Mathematics Standards	Aligned Components of Eureka Math
A2P.PAFR.5.1	Algebra I M3 Lesson 15: Piecewise Functions
Graph piecewise functions and describe their key features.	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 20: Four Interesting Transformations of Functions
Graph piecewise functions and describe	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions Algebra I M3 Lesson 18: Four Interesting Transformations of Functions

South Carolina College- and Career-Ready Mathematics Standards

Aligned Components of Eureka Math

A2P.PAFR.5.2	Supplemental material is necessary to address this standard.
Solve linear absolute value inequalities.	

Patterns, Algebra, and Functional Reasoning

A2P.PAFR.6 Represent and interpret functions symbolically and graphically.

South Carolina	
College- and Career-Ready	
Mathematics Standards	

Aligned Components of Eureka Math

A2P.PAFR.6.1 Find the inverse of functions and verify graphically.	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions Precalculus and Advanced Topics M3 Topic C: Inverse Functions
A2P.PAFR.6.2	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
Calculate and interpret the average rate of change of the function over a specified interval, given a function in graphical, symbolic, or numerical form.	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra II M3 Lesson 6: Euler's Number, <i>e</i>
	Algebra II M3 Lesson 27: Modeling with Exponential Functions

South Carolina College- and Career-Ready Mathematics Standards

Aligned Components of Eureka Math

A2P.PAFR.6.3	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
Use linear programming to solve systems of equations and inequalities by addressing the constraints that arise in real-world situations.	