EUREKA MATH[™]

ALIGNEDTeachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.ALIGNEDEureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.DATASchools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.FULL SUITE OF RESOURCESAs a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following: 	ABOUT EUREKA MATH	Created by the nonprofit Great Minds, <i>Eureka Math</i> helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus—a principle tested and proven to be essential in students' mastery of math.
ALIGNEDEureka Math is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.DATASchools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.FULL SUITE OF RESOURCESAs a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following: 		Teachers and students using <i>Eureka Math</i> find the trademark "Aha!" moments in <i>Eureka Math</i> to be a source of joy and inspiration, lesson after lesson, year after year.
DATASchools and districts nationwide are experiencing student growth and impressive test scores after using <i>Eureka Math</i> . See their stories and data at greatminds.org/data.FULL SUITE OF RESOURCESAs a nonprofit, Great Minds offers the <i>Eureka Math</i> curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:Printed material in English and Spanish Digital resources Professional development Classroom tools and manipulatives	ALIGNED	<i>Eureka Math</i> is the only curriculum found by EdReports.org to align fully with the Common Core State Standards for Mathematics for all grades, Kindergarten through Grade 8. Great Minds offers detailed analyses which demonstrate how each grade of <i>Eureka Math</i> aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.
FULL SUITE OF RESOURCESAs a nonprofit, Great Minds offers the Eureka Math curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:Printed material in English and SpanishDigital resourcesProfessional developmentClassroom tools and manipulatives	DATA	Schools and districts nationwide are experiencing student growth and impressive test scores after using <i>Eureka Math</i> . See their stories and data at greatminds.org/data.
The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following: Printed material in English and Spanish Digital resources Professional development Classroom tools and manipulatives 	FULL SUITE OF RESOURCES	As a nonprofit, Great Minds offers the <i>Eureka Math</i> curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/math/curriculum.
 Printed material in English and Spanish Digital resources Professional development Classroom tools and manipulatives 		The teacher–writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:
		 Printed material in English and Spanish Digital resources Professional development Classroom tools and manipulatives

• Parent resources

South Carolina College- and Career-Ready Standards for Mathematics Correlation to *Eureka Math*™

GRADE 8 MATHEMATICS

The majority of the Grade 8 South Carolina College- and Career-Ready Standards for Mathematics are fully covered by the Grade 8 *Eureka Math* curriculum. The areas where the Grade 8 South Carolina College- and Career-Ready Standards for Mathematics and Grade 8 *Eureka Math* do not align will require the use of *Eureka Math* content from other grade levels or courses, or supplemental materials. A detailed analysis of alignment is provided in the table below. With strategic placement of supplemental materials, *Eureka Math* can ensure students are successful in achieving the proficiencies of the South Carolina College- and Career-Ready Standards for Mathematics while still benefiting from the coherence and rigor of *Eureka Math*.

INDICATORS

Green indicates that the South Carolina standard is fully addressed in *Eureka Math*.

Yellow indicates that the South Carolina standard may not be completely addressed in *Eureka Math*.

Red indicates that the South Carolina standard is not addressed in *Eureka Math*.

Blue indicates there is a discrepancy between the grade level at which this standard is addressed in the South Carolina standards and in *Eureka Math*.

Mathematical Process Standards	Aligned Components of Eureka Math
 1: Make sense of problems and persevere in solving them. a. Relate a problem to prior knowledge. b. Recognize there may be multiple entry points to a problem and more than one path to a solution. c. Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem. d. Evaluate the success of an approach to solve a problem and refine it if necessary. 	Lessons in every module engage students in making sense of problems and persevering in solving them as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 1, which is specifically addressed in the following modules: G8 M1: Integer Exponents and Scientific Notation G8 M4: Linear Equations
 2: Reason both contextually and abstractly. a. Make sense of quantities and their relationships in mathematical and real-world situations. b. Describe a given situation using multiple mathematical representations. c. Translate among multiple mathematical representations and compare the meanings each representation conveys about the situation. d. Connect the meaning of mathematical operations to the context of a given situation. 	Lessons in every module engage students in reasoning abstractly and quantitatively as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 2, which is specifically addressed in the following modules: G8 M1: Integer Exponents and Scientific Notation G8 M2: The Concept of Congruence G8 M4: Linear Equations G8 M5: Examples of Functions from Geometry G8 M6: Linear Functions

Mathematical Process Standards	Aligned Components of Eureka Math	
 3: Use critical thinking skills to justify mathematical reasoning and critique the reasoning of others. a. Construct and justify a solution to a problem. b. Compare and discuss the validity of various reasoning strategies. c. Make conjectures and explore their validity. d. Reflect on and provide thoughtful responses to the reasoning of others. 	Lessons in every module engage students in constructing viable arguments and critiquing the reasoning of others as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 3, which is specifically addressed in the following modules: G8 M1: Integer Exponents and Scientific Notation G8 M2: The Concept of Congruence G8 M3: Similarity G8 M4: Linear Equations	
 4: Connect mathematical ideas and real-world situations through modeling. a. Identify relevant quantities and develop a model to describe their relationships. b. Interpret mathematical models in the context of the situation. c. Make assumptions and estimates to simplify complicated situations. d. Evaluate the reasonableness of a model and refine if necessary. 	Lessons in every module engage students in modeling with mathematics as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 4, which is specifically addressed in the following modules: G8 M3: Similarity G8 M4: Linear Equations G8 M6: Linear Functions	

Mathematical Process Standards	Aligned Components of Eureka Math
 5: Use a variety of mathematical tools effectively and strategically. a. Select and use appropriate tools when solving a mathematical problem. b. Use technological tools and other external mathematical resources to explore and deepen understanding of concepts. 	 Lessons in every module engage students in using appropriate tools strategically as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 5, which is specifically addressed in the following modules: G8 M3: Similarity G8 M4: Linear Equations G8 M6: Linear Functions
 6: Communicate mathematically and approach mathematical situations with precision. a. Express numerical answers with the degree of precision appropriate for the context of a situation. b. Represent numbers in an appropriate form according to the context of the situation. c. Use appropriate and precise mathematical language. d. Use appropriate units, scales, and labels. 	Lessons in every module engage students in attending to precision as required by this standard. This process standard is analogous to the CCSSM Standards for Mathematical Practice 6, which is specifically addressed in the following modules: G8 M1: Integer Exponents and Scientific Notation G8 M2: The Concept of Congruence G8 M3: Similarity G8 M4: Linear Equations
	 G8 M5: Examples of Functions from Geometry G8 M6: Linear Functions G8 M7: Introduction to Irrational Numbers Using Geometry

7: Identify and utilize structure and patterns.	sons in every module engage students in looking for and
 a. Recognize complex mathematical objects as being composed of more than one simple object. b. Recognize mathematical repetition in order to make generalizations. 	king use of structure as required by this standard. This ocess standard is analogous to the CCSSM Standards Mathematical Practice 7 and 8, which are specifically dressed in the following modules:
c. Look for structures to interpret meaning and develop solution strategies. G8 M	M1: Integer Exponents and Scientific Notation
G8 M	M4: Linear Equations
G8 M G8 M G8 M	M5: Examples of Functions from Geometry M6: Linear Functions M7: Introduction to Irrational Numbers Using Geometry

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
The Number System	8.NS.1 Explore the real number system and its appropriate usage in real-world situations.	
	a. Recognize the differences between rational and irrational numbers.	G8 M7 Topic B: Decimal Expansions of Numbers
	b. Understand that all real numbers have a decimal expansion.	G8 M7 Topic B: Decimal Expansions of Numbers
	c. Model the hierarchy of the real number	G8 M7 Topic B: Decimal Expansions of Numbers
	system, including natural, whole, integer, rational, and irrational numbers.	Note: Supplemental material is necessary to explicitly address the hierarchy of the real number system.
	8.NS.2	G8 M7 Topic A: Square and Cube Roots
	Estimate and compare the value of irrational numbers by plotting them on a number line.	G8 M7 Lesson 10: Converting Repeating Decimals to Fractions
		G8 M7 Lesson 11: The Decimal Expansion of Some Irrational Numbers
		G8 M7 Lesson 13: Comparing Irrational Numbers
		G8 M7 Lesson 14: Decimal Expansion of π
	8.NS.3	G8 M7 Topic B: Decimal Expansions of Numbers
	Extend prior knowledge to translate among multiple representations of rational numbers (fractions, decimal numbers, percentages). Include the conversion of repeating decimal numbers to fractions.	

	•	
Functions	8.F.1 Explore the concept of functions.	
	a. Understand that a function assigns to each input exactly one output.	G8 M5: Examples of Functions from Geometry
	b. Relate inputs (<i>x</i> -values or domain) and outputs (<i>y</i> -values or range) to independent and dependent variables.	G8 M5 Lesson 4: More Examples of Functions G8 M5 Lesson 5: Graphs of Functions and Equations
	c. Translate among the multiple representations of a function, including mappings, tables, graphs, equations, and verbal descriptions.	G8 M6 Topic A: Linear Functions
	d. Determine if a relation is a function using multiple representations, including mappings, tables, graphs, equations, and verbal descriptions.	G8 M5 Topic A: Functions
	e. Graph a function from a table of values. Understand that the graph and table both represent a set of ordered pairs of that function.	G8 M6 Topic A: Linear Functions
	8.F.2 Compare multiple representations of two functions, including mappings, tables, graphs, equations, and verbal descriptions, in order to draw conclusions.	G8 M5 Lesson 7: Comparing Linear Functions and Graphs

Key ConceptsContent Standards for Mathematics

Aligned Components of Eureka Math

8.F.3 Investigate the differences between linear and nonlinear functions using multiple representations (i.e., tables, graphs, equations, and verbal descriptions).	
a. Define an equation in slope-intercept form $(y = mx + b)$ as being a linear function.	G8 M6 Topic A: Linear Functions G8 M6: Linear Functions
b. Recognize that the graph of a linear function has a constant rate of change.	G8 M6 Topic A: Linear Functions
c. Provide examples of nonlinear functions.	G8 M5: Examples of Functions from Geometry
8.F.4 Apply the concepts of linear functions to real-world and mathematical situations.	
a. Understand that the slope is the constant rate of change and the <i>y</i> -intercept is the point where <i>x</i> = 0.	G8 M4 Topic C: Slope and Equations of Lines
b. Determine the slope and the <i>y</i> -intercept of a linear function given multiple representations, including two points, tables, graphs, equations, and verbal descriptions.	G8 M4 Topic C: Slope and Equations of Lines
c. Construct a function in slope-intercept form that models a linear relationship between two quantities.	G8 M6 Topic A: Linear Functions

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	d. Interpret the meaning of the slope and	G8 M4 Topic C: Slope and Equations of Lines
	context of the situation.	G8 M5 Lesson 3: Linear Functions and Proportionality
		G8 M5 Lesson 6: Graphs of Linear Functions and Rate of Change
		G8 M5 Lesson 7: Comparing Linear Functions and Graphs
		G8 M6 Topic A: Linear Functions
		G8 M6 Lesson 10: Linear Models
	e. Explore the relationship between linear functions and arithmetic sequences.	G8 M6 Topic A: Linear Functions
	8.F.5 Apply the concepts of linear and nonlinear functions to graphs in real-world and mathematical situations.	
	a. Analyze and describe attributes of graphs of functions (e.g., constant, increasing/ decreasing, linear/nonlinear, maximum/ minimum, discrete/continuous).	G8 M5 Topic A: Functions G8 M6: Linear Functions

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	b. Sketch the graph of a function from a verbal description.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs
		G8 M4 Lesson 15: The Slope of a Non-Vertical Line
		G8 M4 Lesson 22: Constant Rates Revisited
		G8 M4 Lesson 24: Introduction to Simultaneous Equations
	c. Write a verbal description from the graph of a function with and without scales.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs
Expressions, Equations, and Inequalities	8.EEI.1 Understand and apply the laws of exponents (i.e., product rule, quotient rule, power to a power, product to a power, quotient to a power, zero power property, negative exponents) to simplify numerical expressions that include integer exponents.	G8 M1: Integer Exponents and Scientific Notation
	8.EEI.2 Investigate concepts of square and cube roots.	
	a. Find the exact and approximate solutions	G8 M7 Lesson 2: Square Roots
	to equations of the form $x^2 = p$ and $x^3 = p$ where p is a positive rational number.	G8 M7 Lesson 5: Solving Equations with Radicals
	b. Evaluate square roots of perfect squares.	G8 M7 Lesson 2: Square Roots
		G8 M7 Lesson 5: Solving Equations with Radicals
	c. Evaluate cube roots of perfect cubes.	G8 M7 Topic A: Square and Cube Roots

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	d. Recognize that square roots of non- perfect squares are irrational.	G8 M7: Introduction to Irrational Numbers Using Geometry
	8.EEI.3 Explore the relationship between quantities in decimal and scientific notation.	
	a. Express very large and very small quantities in scientific notation in the form $a \times 10^b = p$ where $1 \le a < 10$ and b is an integer.	G8 M1: Integer Exponents and Scientific Notation
	b. Translate between decimal notation and scientific notation.	 G8 M1 Lesson 8: Estimating Quantities G8 M1 Lesson 9: Scientific Notation G8 M1 Lesson 13: Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology G8 M7 Topic B: Decimal Expansions of Numbers
	c. Estimate and compare the relative size of two quantities in scientific notation.	G8 M1: Integer Exponents and Scientific Notation
	8.EEI.4 Apply the concepts of decimal and scientific notation to solve real-world and mathematical problems.	
	a. Multiply and divide numbers expressed in both decimal and scientific notation.	G8 M1: Integer Exponents and Scientific Notation

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	b. Select appropriate units of measure when representing answers in scientific notation.	G8 M1: Integer Exponents and Scientific Notation
	c. Translate how different technological devices display numbers in scientific notation.	 G8 M1 Lesson 8: Estimating Quantities G8 M1 Lesson 9: Scientific Notation G8 M1 Lesson 13: Comparison of Numbers Written in Scientific Notation and Interpreting Scientific Notation Using Technology
	8.EEI.5 Apply concepts of proportional relationships to real-world and mathematical situations.	
	a. Graph proportional relationships.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs
	b. Interpret unit rate as the slope of the graph.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs G8 M4 Topic C: Slope and Equations of Lines
	c. Compare two different proportional relationships given multiple representations, including tables, graphs, equations, diagrams, and verbal descriptions.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs

Key Concepts	Content Standards for Mathematics
--------------	--

8.EEI.6 Apply concepts of slope and <i>y</i> -intercept to graphs, equations, and proportional relationships.	
a. Explain why the slope, <i>m</i> , is the same between any two distinct points on a non-vertical line using similar triangles.	G8 M4 Topic C: Slope and Equations of Lines
b. Derive the slope-intercept form $(y = mx + b)$ for a non-vertical line.	G8 M4 Topic C: Slope and Equations of Lines G8 M6 Topic C: Linear and Nonlinear Models
c. Relate equations for proportional relationships ($y = kx$) with the slope- intercept form ($y = mx + b$) where $b = 0$.	G8 M4 Topic B: Linear Equations in Two Variables and Their Graphs G8 M6 Topic C: Linear and Nonlinear Models
8.EEI.7 Extend concepts of linear equations and inequalities in one variable to more complex multi-step equations and inequalities in real-world and mathematical situations.	
a. Solve linear equations and inequalities with rational number coefficients that include the use of the distributive property, combining like terms, and variables on both sides.	G8 M4 Topic A: Writing and Solving Linear Equations Note: Supplemental material is necessary to address inequalities.

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math		
	 b. Recognize the three types of solutions to linear equations: one solution (<i>x</i> = <i>a</i>), infinitely many solutions (<i>a</i> = <i>a</i>), or no solutions (<i>a</i> = <i>b</i>). 	G8 M4 Topic A: Writing and Solving Linear Equations		
	c. Generate linear equations with the three types of solutions.	G8 M4 Topic A: Writing and Solving Linear Equations		
	d. Justify why linear equations have a specific type of solution.	G8 M4 Topic A: Writing and Solving Linear Equations		
	8.EEI.8 Investigate and solve real-world and mathematical problems involving systems of linear equations in two variables with integer coefficients and solutions.			
	a. Graph systems of linear equations and estimate their point of intersection.	G8 M4 Topic D: Systems of Linear Equations and Their SolutionsNote: Learning systems of linear equations is extended in Algebra I M1 Topic C.		
	b. Understand and verify that a solution to a system of linear equations is represented on a graph as the point of intersection of the two lines.	G8 M4 Topic D: Systems of Linear Equations and Their Solutions G8 M4 Topic E: Pythagorean Theorem		
		Note: Learning systems of linear equations is extended in Algebra I M1 Topic C.		

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	c. Solve systems of linear equations algebraically, including methods of substitution and elimination, or through inspection.	 G8 M4 Topic D: Systems of Linear Equations and Their Solutions G8 M4 Topic E: Pythagorean Theorem Note: Learning systems of linear equations is extended in Algebra I M1 Topic C.
	d. Understand that systems of linear equations can have one solution, no solution, or infinitely many solutions.	 G8 M4 Topic D: Systems of Linear Equations and Their Solutions G8 M4 Topic E: Pythagorean Theorem Note: Learning systems of linear equations is extended in Algebra I M1 Topic C.
Geometry and Measurement	8.GM.1 Investigate the properties of rigid transformations (rotations, reflections, translations) using a variety of tools (e.g., grid paper, reflective devices, graphing paper, technology).	
	a. Verify that lines are mapped to lines, including parallel lines.	G8 M2 Topic A: Definitions and Properties of the Basic Rigid Motions
	b. Verify that corresponding angles are congruent.	G8 M2 Topic A: Definitions and Properties of the Basic Rigid Motions
	c. Verify that corresponding line segments are congruent.	G8 M2 Topic A: Definitions and Properties of the Basic Rigid Motions

Key Concepts	Content Standards for Mathematics
--------------	--

Aligned Components of Eureka Math

8.GM.2 Apply the properties of rigid transformations (rotations, reflections, translations).	
a. Rotate geometric figures 90, 180, and 270 degrees, both clockwise and counterclockwise, about the origin.	G8 M2: The Concept of Congruence
b. Reflect geometric figures with respect to the <i>x</i> -axis and/or <i>y</i> -axis.	 G8 M2 Lesson 4: Definition of Reflection and Basic Properties G8 M2 Lesson 6: Rotations of 180 Degrees G8 M2 Topic B: Sequencing the Basic Rigid Motions G8 M2 Lesson 11: Definition of Congruence and Some Basic Properties
c. Translate geometric figures vertically and/or horizontally.	G8 M2: The Concept of Congruence
d. Recognize that two-dimensional figures are only congruent if a series of rigid transformations can be performed to map the pre-image to the image.	G8 M2: The Concept of Congruence
e. Given two congruent figures, describe the series of rigid transformations that justifies this congruence.	G8 M2 Topic B: Sequencing the Basic Rigid Motions G8 M2 Lesson 11: Definition of Congruence and Some Basic Properties

8.GM.3 Investigate the properties of transformations (rotations, reflections, translations, dilations) using a variety of tools (e.g., grid paper, reflective devices, graphing paper, dynamic software).	
a. Use coordinate geometry to describe the effect of transformations on two- dimensional figures.	G8 M2: The Concept of Congruence
b. Relate scale drawings to dilations of geometric figures.	G8 M3 Topic A: Dilation
8.GM.4 Apply the properties of transformations (rotations, reflections, translations, dilations).	
a. Dilate geometric figures using scale factors that are positive rational numbers.	G8 M3 Topic A: Dilation G8 M3 Lesson 8: Similarity G8 M3 Lesson 9: Basic Properties of Similarity
b. Recognize that two-dimensional figures are only similar if a series of transformations can be performed to map the pre-image to the image.	G8 M3 Lesson 3: Examples of Dilations G8 M3 Topic B: Similar Figures
c. Given two similar figures, describe the series of transformations that justifies this similarity.	G8 M3 Lesson 3: Examples of Dilations G8 M3 Topic B: Similar Figures

Aligned Components of Eureka Math

Key Concepts

Content Standards for Mathematics

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	d. Use proportional reasoning to find the missing side lengths of two similar figures.	G8 M3: Similarity
	8.GM.5 Extend and apply previous knowledge of angles to properties of triangles, similar figures, and parallel lines cut by a transversal.	
	a. Discover that the sum of the three angles in a triangle is 180 degrees.	G8 M2 Topic C: Congruence and Angle Relationships
	b. Discover and use the relationship between interior and exterior angles of a triangle.	G8 M2 Topic C: Congruence and Angle Relationships G8 M3 Topic B: Similar Figures
	c. Identify congruent and supplementary pairs of angles when two parallel lines are cut by a transversal.	G8 M2 Lesson 12: Angles Associated with Parallel Lines
	d. Recognize that two similar figures have congruent corresponding angles.	G8 M3 Lesson 4: Fundamental Theorem of Similarity (FTS) G8 M3 Lesson 5: First Consequences of FTS G8 M3 Lesson 8: Similarity G8 M3 Lesson 9: Basic Properties of Similarity
	8.GM.6 Use models to demonstrate a proof of the Pythagorean Theorem and its converse.	G8 M2 Topic D: The Pythagorean Theorem G8 M3 Topic C: The Pythagorean Theorem G8 M7 Topic C: The Pythagorean Theorem

-

_ -

Key Concepts	Content Standards for Mathematics	Aligned Components of Eureka Math
	8.GM.7	G8 M2 Topic D: The Pythagorean Theorem
	Apply the Pythagorean Theorem to model and solve real-world and mathematical problems	G8 M3 Topic C: The Pythagorean Theorem
	in two and three dimensions involving right triangles.	G8 M4 Topic E: Pythagorean Theorem
		G8 M7: Introduction to Irrational Numbers Using Geometry
	8.GM.8	G8 M2 Topic D: The Pythagorean Theorem
	Find the distance between any two points in the coordinate plane using the Pythagorean Theorem.	G8 M7 Lesson 17: Distance on the Coordinate Plane
	8.GM.9	G8 M5: Examples of Functions from Geometry
	Solve real-world and mathematical problems involving volumes of cones, cylinders, and spheres and the surface area of cylinders.	G8 M7 Topic D: Applications of Radicals and Roots
s		Note: Supplemental material is necessary to address surface area of cylinders.
Data	8.DSP.1	
Analysis, Statistics	Investigate bivariate data.	
and	a. Collect bivariate data.	G8 M6: Linear Functions
Probability	b. Graph the bivariate data on a scatter plot.	G8 M6 Topic B: Bivariate Numerical Data
	c. Describe patterns observed on a scatter plot, including clustering, outliers, and association (positive, negative, no correlation, linear, nonlinear).	G8 M6 Topic B: Bivariate Numerical Data

Key Concepts	ey Concepts Content Standards for Mathematics		Alignea Components of Eureka Math		
	8.DSP.2 Draw an approximate line of best fit on a		G8 M6 Topic C: Linear and Nonlinear Models		
	association and informally assess the fit of the line to the data points.				
	8.DSP.3 Apply concepts of an approximate line of best fit in real-world situations.				
	a. Find an approximate equation for the line of best fit using two appropriate data points.		G8 M6 Topic C: Linear and Nonlinear Models		
	b. Interpret the slope and intercept.		G8 M6 Topic C: Linear and Nonlinear Models		
	c. Solve problems using the equation.		G8 M6: Linear Functions		
	8.DSP.4 Investigate bivariate categorical data in two- way tables.				
	a. Organize bivariate categorical data in a two-way table.		G8 M6 Topic D: Bivariate Categorical Data		
	b. Interpret data in two-way tables using relative frequencies.		G8 M6 Topic D: Bivariate Categorical Data		
	c. Explore patterns of possible association between the two categorical variables.		G8 M6 Topic D: Bivariate Categorical Data		

T7 - 1 . •

A 1: 10 . 1

Key Concepts	Content Standards for Mathematics
--------------	--

Aligned Components of Eureka Math

8.DSP.5 Organize data in matrices with rational numbers and apply to real-world and mathematical situations.	
a. Understand that a matrix is a way to organize data.	Precalculus and Advanced Topics M2 Topic A: Networks and Matrices
b. Recognize that a $m \times n$ matrix has m rows and n columns.	Precalculus and Advanced Topics M2 Topic A: Networks and Matrices
c. Add and subtract matrices of the same size.	Precalculus and Advanced Topics M2 Topic A: Networks and Matrices
d. Multiply a matrix by a scalar.	Precalculus and Advanced Topics M2 Topic B: Linear Transformations of Planes and Space