

Algebra I | Tennessee Academic Standards for Mathematics Correlation to Eureka Math®

About Eureka Math

Created by Great Minds[®], a mission-driven Public Benefit Corporation, *Eureka Math*[®] helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus–a principle tested and proven to be essential in students' mastery of math.

Teachers and students using *Eureka Math* find the trademark "Aha!" moments in *Eureka Math* to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of *Eureka Math* aligns with specific state standards. Access these free alignment studies at <u>greatminds.org/state-studies</u>.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using *Eureka Math*. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at <u>greatminds.org/</u><u>math/curriculum</u>.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

A1 | Tennessee Academic Standards for Mathematics Correlation to Eureka Math

Standards for Mathematical Practice	Aligned Components of Eureka Math	
MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are designated in the Module Overview and labeled in lessons. For example:	
MP.2 Reason abstractly and quantitatively.	A STORY OF FUNCTIONS Lesson 8 M4 ALGEBRA I	
MP.3 Construct viable arguments and critique the reasoning of others.	Problem Set Sample Solutions 1. Khaya stated that every y-value of the graph of a quadratic function has two different x-values. Do you agree or disagree with Khaya? Explain your answer.	
MP.4 Model with mathematics.	 The graph of a quadratic function has two different x-values for each y-value except at the vertex where there is only one. Is it possible for the graphs of two different quadratic functions to each have x = -3 as its line of symmetry and both have a maximum at y = 57 Explain and support your answer with a sketch of the graphs. Students should sketch two graphs with vertex at (-3, 5) and different x-intercepts. 	
MP.5 Use appropriate tools strategically.		
MP.6 Attend to precision.		
MP.7 Look for and make use of structure.		
MP.8 Look for and express regularity in repeated reasoning.		

Quantities

A1.N.Q.A Reason quantitatively and use units to understand problems.

Tennessee Academic Standards for Mathematics

Aligned Components of Eureka Math This standard is fully addressed by the lessons aligned to its subsections. A1.N.Q.A.1 Use units as a way to understand real-world problems. A1.N.Q.A.1a Algebra I M1 Topic A: Introduction to Functions Studied This Year-Graphing Stories Choose and interpret the scale and the Algebra I M1 Lesson 25: Solving Problems in Two Ways-Rates and Algebra origin in graphs and data displays. Algebra I M1 Lesson 28: Federal Income Tax Algebra I M1 Topic A: Introduction to Functions Studied This Year-Graphing Stories A1.N.Q.A.1b Use appropriate quantities in formulas, Algebra I M1 Lesson 25: Solving Problems in Two Ways-Rates and Algebra converting units as necessary. Algebra I M1 Lesson 28: Federal Income Tax A1.N.Q.A.1c Algebra I M1 Topic A: Introduction to Functions Studied This Year-Graphing Stories Define and justify appropriate quantities Algebra I M5 Lesson 1: Analyzing a Graph within a context for the purpose Algebra I M5 Lesson 4: Modeling a Context from a Graph of modeling. Algebra I M5 Lesson 7: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description A1.N.Q.A.1d Algebra I M1 Topic A: Introduction to Functions Studied This Year-Graphing Stories Choose an appropriate level of accuracy Algebra I M5 Lesson 6: Modeling a Context from Data when reporting quantities. Algebra I M5 Lesson 7: Modeling a Context from Data Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Seeing Structure in Expressions

A1.A.SSE.A Interpret the structure of expressions.

Tennessee Academic Standards for Mathematics	Aligned Components of Eureka Math
A1.A.SSE.A.1	Algebra I M1 Lesson 26: Recursive Challenge Problem–The Double and Add 5 Game
Interpret expressions that represent a quantity in terms of its context.	Algebra I M1 Lesson 27: Recursive Challenge Problem–The Double and Add 5 Game
	Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services?
	Algebra I M3 Lesson 5: The Power of Exponential Growth
	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 7: Exponential Decay
	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
A1.A.SSE.A.1a	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
Interpret parts of an expression, such as terms, factors, and coefficients.	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions

for Mathematics	Aligned Components of Eureka Math
A1.A.SSE.A.1b	Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services?
Interpret complicated expressions by viewing one or more of their parts as a single entity.	Algebra I M3 Lesson 5: The Power of Exponential Growth
	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 7: Exponential Decay
	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
	Algebra I M4 Lesson 12: Completing the Square
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$

Tennessee Academic Standards

Arithmetic with Polynomials and Rational Expressions

A1.A.APR.A Perform arithmetic operations on polynomials.

Tennessee Academic Standards for Mathematics

A1.A.APR.A.1	Algebra I M1 Lesson 8: Adding and Subtracting Polynomials
Add, subtract, and multiply polynomials.	Algebra I M1 Lesson 9: Multiplying Polynomials
Use these operations to demonstrate that polynomials form a closed system	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
that adhere to the same properties	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
of operations as the integers.	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions

Creating Equations

A1.A.CED.A Create equations that describe numbers or relationships.

Tennessee Academic Standards for Mathematics

A1.A.CED.A.1	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
Create equations and inequalities in one variable and use them to solve problems	Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra
	Algebra I M1 Lesson 26: Recursive Challenge Problem–The Double and Add 5 Game
in a real-world context.	Algebra I M1 Lesson 27: Recursive Challenge Problem–The Double and Add 5 Game
	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations
	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description
A1.A.CED.A.2	Algebra I M1 Lesson 5: Two Graphing Stories
Create equations in two variables	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
to represent relationships between	Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations
quantities and use them to solve problems in a real-world context.	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
Graph equations with two variables	Algebra I M1 Lesson 28: Federal Income Tax
on coordinate axes with labels and	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
scales, and use the graphs to make predictions.	Algebra I M4 Lesson 12: Completing the Square
predictions.	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 23: Modeling with Quadratic Functions
	Algebra I M4 Lesson 24: Modeling with Quadratic Functions
	Algebra I M5 Topic A: Elements of Modeling
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description

for Mathematics	Aligned Components of Eureka Math
A1.A.CED.A.3	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by
Create individual and systems	"And" or "Or"
of equations and/or inequalities	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
to represent constraints in a contextual situation, and interpret solutions as viable or non-viable.	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities
	Algebra I M1 Lesson 27: Recursive Challenge Problem–The Double and Add 5 Game
	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
	Algebra I M3 Lesson 24: Piecewise and Step Functions in Context
A1.A.CED.A.4	Algebra I M1 Lesson 19: Rearranging Formulas
Rearrange formulas to isolate a quantity of interest using algebraic reasoning.	

Reasoning with Equations and Inequalities

A1.A.REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Tennessee Academic Standards for Mathematics

A1.A.REI.A.1	Algebra I M1 Lesson 12: Solving Equations
Understand solving equations as a process of reasoning and explain the reasoning. Construct a viable argument to justify a solution method.	Algebra I M1 Lesson 13: Some Potential Dangers When Solving Equations Algebra I M1 Lesson 17: Equations Involving Factored Expressions Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator

Reasoning with Equations and Inequalities

A1.A.REI.B Solve equations and inequalities in one variable.

Tennessee	Academic Standards
for Mathematics	

A1.A.REI.B.2	Algebra I M1 Lesson 10: True and False Equations
Solve linear and absolute value	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities
equations and inequalities in one variable.	Algebra I M1 Lesson 12: Solving Equations
in one variable.	Algebra I M1 Lesson 13: Some Potential Dangers When Solving Equations
	Algebra I M1 Lesson 14: Solving Inequalities
	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"
	Algebra I M1 Lesson 16: Solving and Graphing Inequalities Joined by "And" or "Or"
	Algebra I M1 Lesson 17: Equations Involving Factored Expressions
	Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator
	Algebra I M1 Lesson 19: Rearranging Formulas
	Algebra I M1 Lesson 25: Solving Problems in Two Ways–Rates and Algebra
	Algebra I M1 Lesson 27: Recursive Challenge Problem–The Double and Add 5 Game
	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
A1.A.REI.B.2a	Algebra I M1 Lesson 10: True and False Equations
Solve linear equations and inequalities,	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities
including compound inequalities, in one variable. Represent solutions algebraically and graphically.	Algebra I M1 Lesson 12: Solving Equations
	Algebra I M1 Lesson 13: Some Potential Dangers When Solving Equations
	Algebra I M1 Lesson 14: Solving Inequalities
	Algebra I M1 Lesson 15: Solution Sets of Two or More Equations (or Inequalities) Joined by "And" or "Or"

for Mathematics	Aligned Components of Eureka Math
A1.A.REI.B.2a continued	Algebra I M1 Lesson 16: Solving and Graphing Inequalities Joined by "And" or "Or" Algebra I M1 Lesson 17: Equations Involving Factored Expressions Algebra I M1 Lesson 18: Equations Involving a Variable Expression in the Denominator Algebra I M1 Lesson 19: Rearranging Formulas Algebra I M1 Lesson 25: Solving Problems in Two Ways—Rates and Algebra Algebra I M1 Lesson 27: Recursive Challenge Problem—The Double and Add 5 Game
A1.A.REI.B.2b Solve absolute value equations and inequalities in one variable. Represent solutions algebraically and graphically.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Supplemental material is necessary to address solving absolute value inequalities in one variable.
A1.A.REI.B.3 Solve quadratic equations and inequalities in one variable.	Algebra I M1 Lesson 11: Solution Sets for Equations and Inequalities Algebra I M4 Lesson 5: The Zero Product Property Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra I M4 Lesson 13: Solving Quadratic Equations by Completing the Square Algebra I M4 Lesson 14: Deriving the Quadratic Formula Algebra I M4 Lesson 15: Using the Quadratic Formula
A1.A.REI.B.3a Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, knowing and applying the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when a quadratic equation has solutions that are not real numbers.	Algebra I M4 Lesson 5: The Zero Product Property Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable Algebra I M4 Lesson 14: Deriving the Quadratic Formula Algebra I M4 Lesson 15: Using the Quadratic Formula

Aligned Components of Eureka Math

Solve quadratic inequali	ties using the
graph of the related qua	dratic equation.

A1.A.REI.B.3b

Reasoning with Equations and Inequalities

.

A1.A.REI.C Solve systems of equations.

.

Tennessee Academic Standards for Mathematics	Aligned Components of Eureka Math
A1.A.REI.C.4	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations
Write and solve a system of linear equations in real-world context.	Algebra I M1 Lesson 23: Solution Sets to Simultaneous Equations Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities

Supplemental material is necessary to address this standard.

Reasoning with Equations and Inequalities

A1.A.REI.D Represent and solve equations and inequalities graphically.

Tennessee Academic Standards for Mathematics

A1.A.REI.D.5	Algebra I M1 Lesson 20: Solution Sets to Equations with Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	

for Mathematics	Aligned Components of Eureka Math
A1.A.REI.D.6	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$. Find approximate solutions by graphing the functions or making a table of values, using technology when appropriate.	
A1.A.REI.D.7	Algebra I M1 Lesson 21: Solution Sets to Inequalities with Two Variables
Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Algebra I M1 Lesson 22: Solution Sets to Simultaneous Equations
	Algebra I M1 Lesson 24: Applications of Systems of Equations and Inequalities

Tennessee Academic Standards four Martheous attes

Aligned Components of Europea Math

Interpreting Functions

A1.F.IF.A Understand the concept of a function and use function notation.

Tennessee Academic Standards for Mathematics

Aligned Components of Eureka Math

A1.F.IF.A.1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x)denotes the output of *f* corresponding to the input *x*. The graph of *f* is the graph of the equation y = f(x).

Algebra I M3 Lesson 1: Integer Sequences-Should You Believe in Patterns? Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions Algebra I M3 Lesson 11: The Graph of a Function Algebra I M3 Lesson 12: The Graph of the Equation y = f(x)

for Mathematics	Aligned Components of Eureka Math
A1.F.IF.A.2	This standard is fully addressed by the lessons aligned to its subsections.
Use function notation.	
A1.F.IF.A.2a	Algebra I M3 Topic A: Linear and Exponential Sequences
Use function notation to evaluate	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
functions for inputs in their domains, including functions of two variables.	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
including functions of two variables.	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 11: The Graph of a Function
A1.F.IF.A.2b	Algebra I M3 Topic A: Linear and Exponential Sequences
Interpret statements that use function notation in terms of a context.	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 11: The Graph of a Function
A1.F.IF.A.3	Supplemental material is necessary to address this standard.
Understand geometric formulas as functions.	

Interpreting Functions

A1.F.IF.B Interpret functions that arise in applications in terms of the context.

for Mathematics	Aligned Components of Eureka Math
A1.F.IF.B.4	Algebra I M3 Lesson 13: Interpreting the Graph of a Function
For a function that models a relationship between two quantities, interpret key	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 23: Newton's Law of Cooling
features of graphs and tables in terms of the quantities, and sketch graphs	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
showing key features given a verbal	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
description of the relationship.	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
	Algebra I M5 Lesson 2: Analyzing a Data Set
	Algebra I M5 Lesson 4: Modeling a Context from a Graph
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
A1.F.IF.B.5	Algebra I M3 Lesson 8: Why Stay with Whole Numbers?
Relate the domain of a function to its	Algebra I M3 Lesson 9: Representing, Naming, and Evaluating Functions
graph and, where applicable, to the context of the function it models.	Algebra I M3 Lesson 10: Representing, Naming, and Evaluating Functions
	Algebra I M3 Lesson 11: The Graph of a Function
	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M5 Lesson 1: Analyzing a Graph
	Algebra I M5 Lesson 4: Modeling a Context from a Graph

for Mathematics	Aligned Components of Eureka Math
A1.F.IF.B.6	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval. Estimate and interpret the rate of change from a graph.	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M3 Lesson 22: Modeling an Invasive Species Population
	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
	Algebra I M5 Lesson 4: Modeling a Context from a Graph

Tennessee Academic Standards

Interpreting Functions

A1.F.IF.C Analyze functions using different representations.

Tennessee Academic Standards for Mathematics	Aligned Components of Eureka Math
A1.F.IF.C.7	Algebra I M3 Lesson 11: The Graph of a Function
Graph functions expressed algebraically and show key features of the graph by hand and using technology.	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
	Algebra I M3 Topic C: Transformations of Functions
	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$
	Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$
	Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$
	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
	Algebra I M4 Lesson 19: Translating Graphs of Functions

_

for Mathematics	Aligned Components of Eureka Math
A1.F.IF.C.7 continued	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra I M4 Lesson 23: Modeling with Quadratic Functions
A1.F.IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	This standard is fully addressed by the lessons aligned to its subsection.
A1.F.IF.C.8a Rewrite quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a real-world context.	Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, $f(x) = a(x - m)(x - n)$ Algebra I M4 Lesson 12: Completing the Square Algebra I M4 Lesson 15: Using the Quadratic Formula Algebra I M4 Lesson 16: Graphing Quadratic Equations from the Vertex Form, $y = a(x - h)^2 + k$ Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$ Algebra I M4 Lesson 23: Modeling with Quadratic Functions
A1.F.IF.C.9 Compare properties of functions represented algebraically, graphically, numerically in tables, or by verbal descriptions.	This standard is fully addressed by the lessons aligned to its subsections.

for Mathematics	Aligned Components of Eureka Math
A1.F.IF.C.9a	Algebra I M3 Lesson 5: The Power of Exponential Growth
Compare properties of two different functions. Functions may be of different types and/or represented in different ways.	Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population
	Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates
	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
A1.F.IF.C.9b	Algebra I M1 Lesson 1: Graphs of Piecewise Linear Functions
Compare properties of the same function on two different intervals or represented in two different ways.	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
	Algebra I M3 Lesson 13: Interpreting the Graph of a Function
	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables

Building Functions

A1.F.BF.A Build a function that models a relationship between two quantities.

Tennessee Academic Standards

for Mathematics	Aligned Components of <i>Eureka Math</i>
A1.F.BF.A.1	This standard is fully addressed by the lessons aligned to its subsection.
Build a function that describes a relationship between two quantities.	

for Mathematics	Aligned Components of Eureka Math
A1.F.BF.A.1a	Algebra I M3 Topic A: Linear and Exponential Sequences
Determine steps for calculation,	Algebra I M3 Topic D: Using Functions and Graphs to Solve Problems
a recursive process, or an explicit expression from a context.	Algebra I M5 Topic A: Elements of Modeling
expression from a context.	Algebra I M5 Lesson 5: Modeling from a Sequence
	Algebra I M5 Lesson 6: Modeling a Context from Data
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Building Functions

A1.F.BF.B Build new functions from existing functions.

Tennessee Academic Standards
for Mathematics

	· ·
A1.F.BF.B.2	Algebra I M3 Lesson 17: Four Interesting Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given graphs.	Algebra I M3 Lesson 18: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 19: Four Interesting Transformations of Functions
	Algebra I M3 Lesson 20: Four Interesting Transformations of Functions
	Algebra I M4 Lesson 19: Translating Graphs of Functions
	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
	Algebra I M4 Lesson 21: Transformations of the Quadratic Parent Function, $f(x) = x^2$

Linear and Exponential Models

A1.F.LE.A Construct and compare linear and exponential models and solve problems.

Tennessee Academic Standards for Mathematics

A1.F.LE.A.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. A1.F.LE.A.1a Know that linear functions grow by equal	Algebra I M3 Lesson 5: The Power of Exponential Growth Algebra I M3 Lesson 6: Exponential Growth–U.S. Population and World Population Algebra I M3 Lesson 14: Linear and Exponential Models–Comparing Growth Rates Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description
Know that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.	
A1.F.LE.A.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data

for Mathematics Aligned Components of Eureka Math A1.F.LE.A.1c Algebra I M5 Lesson 2: Analyzing a Data Set Recognize situations in which a quantity Algebra I M5 Lesson 3: Analyzing a Verbal Description grows or decays by a constant factor per Algebra I M5 Lesson 5: Modeling from a Sequence unit interval relative to another. Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description A1.F.LE.A.2 Algebra I M3 Lesson 3: Arithmetic and Geometric Sequences Construct linear and exponential Algebra I M3 Lesson 4: Why Do Banks Pay YOU to Provide Their Services? functions, including arithmetic and Algebra I M3 Lesson 5: The Power of Exponential Growth geometric sequences, given a graph, Algebra I M3 Lesson 6: Exponential Growth-U.S. Population and World Population a table, a description of a relationship, or input-output pairs. Algebra I M3 Lesson 7: Exponential Decay Algebra I M3 Lesson 14: Linear and Exponential Models-Comparing Growth Rates Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again Algebra I M3 Lesson 22: Modeling an Invasive Species Population Algebra I M3 Lesson 23: Newton's Law of Cooling Algebra I M5 Lesson 2: Analyzing a Data Set Algebra I M5 Lesson 3: Analyzing a Verbal Description Algebra I M5 Lesson 5: Modeling from a Sequence Algebra I M5 Lesson 6: Modeling a Context from Data Algebra I M5 Lesson 8: Modeling a Context from a Verbal Description Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description

Linear and Exponential Models

A1.F.LE.B Interpret expressions for functions in terms of the situation they model.

Tennessee Academic Standards for Mathematics

Aligned Components of Eureka Math

A1.F.LE.B.3	Algebra I M3 Lesson 21: Comparing Linear and Exponential Models Again
Interpret the parameters in a linear or exponential function in terms of a context.	Algebra I M3 Lesson 22: Modeling an Invasive Species Population

Interpreting Categorical and Quantitative Data

A1.S.ID.A Summarize, represent, and interpret data on a single count or measurement variable.

for Mathematics	Aligned Components of Eureka Math
A1.S.ID.A.1 Use measures of center to solve real-world and mathematical problems.	Algebra I M2 Topic A: Shapes and Centers of Distributions Algebra I M2 Lesson 4: Summarizing Deviations from the Mean Algebra I M2 Lesson 8: Comparing Distributions
A1.S.ID.A.2 Use statistics appropriate to the shape of the data distribution to compare center (mean, median, and/or mode) and spread (range, interquartile range) of two or more different data sets.	Algebra I M2 Lesson 3: Estimating Centers and Interpreting the Mean as a Balance Point Algebra I M2 Lesson 4: Summarizing Deviations from the Mean Algebra I M2 Lesson 8: Comparing Distributions Supplemental material is necessary to address mode and range.
A1.S.ID.A.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.	Algebra I M2 Lesson 2: Describing the Center of a Distribution Algebra I M2 Lesson 3: Estimating Centers and Interpreting the Mean as a Balance Point Algebra I M2 Topic B: Describing Variability and Comparing Distributions

Tennessee Academic Standards

Interpreting Categorical and Quantitative Data

A1.S.ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Tennessee Academic Standards for Mathematics

Aligned Components of Eureka Math

A1.S.ID.B.4	Algebra I M2 Topic D: Numerical Data on Two Variables
Represent data from two quantitative variables on a scatter plot, and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	Algebra I M5 Lesson 7: Modeling a Context from Data

Interpreting Categorical and Quantitative Data

A1.S.ID.C Interpret linear models.

for Mathematics	Aligned Components of Eureka Math
A1.S.ID.C.5	Algebra I M2 Lesson 14: Modeling Relationships with a Line
Interpret the rate of change and the constant term of a linear model in the context of data.	
A1.S.ID.C.6	Algebra I M2 Lesson 19: Interpreting Correlation
Use technology to compute the correlation coefficient of a linear model; interpret the correlation coefficient	Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables Algebra I M5 Lesson 7: Modeling a Context from Data
in the context of the data.	

A1.S.ID.C.7	Algebra I M2 Lesson 19: Interpreting Correlation
Explain the differences between correlation and causation. Recognize situations where an additional factor may be affecting correlated data.	Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables