About Eureka Math

EUREKA

MATH

Created by Great Minds[®], a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/ math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Mathematical Process Goals for Students	Aligned Components of Eureka Math
Mathematical Problem Solving	Lessons in every module engage students in mathematical processes.
Mathematical Communication	
Mathematical Reasoning	
Mathematical Connections	
Mathematical Representations	

Expressions and Operations

A2.EO.1 The student will perform operations on and simplify rational expressions.

Mathematics Standards of Learning for Virginia Public Schools

Aligned Components of Eureka Math A2.EO.1.a Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Add, subtract, multiply, or divide rational Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions algebraic expressions, simplifying Precalculus and Advanced Topics M3 Lesson 10: The Structure of Rational Expressions the result. Algebra II M1 Lesson 4: Comparing Methods-Long Division, Again? A2.EO.1.b Justify and determine equivalent Algebra II M1 Lesson 6: Dividing by x - a and by x + arational algebraic expressions with Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring-What If There Is a Remainder? monomial and binomial factors. Algebra II M1 Lesson 22: Equivalent Rational Expressions Algebraic expressions should be limited to linear and quadratic expressions. Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions A2.EO.1.c Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Recognize a complex algebraic fraction and simplify it as a product or quotient of simple algebraic fractions. A2.EO.1.d Algebra II M1 Lesson 4: Comparing Methods-Long Division, Again? Represent and demonstrate equivalence Algebra II M1 Lesson 6: Dividing by x - a and by x + aof rational expressions written Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring-What If There Is a Remainder? in different forms. Algebra II M1 Lesson 22: Equivalent Rational Expressions Algebra II M1 Lesson 23: Comparing Rational Expressions Algebra II M1 Lesson 24: Multiplying and Dividing Rational Expressions Algebra II M1 Lesson 25: Adding and Subtracting Rational Expressions

Expressions and Operations

A2.EO.2 The student will perform operations on and simplify radical expressions.

Mathematics Standards of Learning for Virginia Public Schools

A2.EO.2.a Simplify and determine equivalent radical expressions that include numeric and algebraic radicands.	Geometry M2 Lesson 22: Multiplying and Dividing Expressions with Radicals Algebra II M1 Lesson 9: Radicals and Conjugates Algebra II M3 Lesson 4: Properties of Exponents and Radicals
A2.EO.2.b Add, subtract, multiply, and divide radical expressions that include numeric and algebraic radicands, simplifying the result. Simplification may include rationalizing the denominator.	Geometry M2 Lesson 22: Multiplying and Dividing Expressions with Radicals Geometry M2 Lesson 23: Adding and Subtracting Expressions with Radicals Algebra II M1 Lesson 9: Radicals and Conjugates Algebra II M3 Lesson 4: Properties of Exponents and Radicals
A2.EO.2.c Convert between radical expressions and expressions containing rational exponents.	Algebra II M3 Lesson 4: Properties of Exponents and Radicals

Expressions and Operations

A2.EO.3 The student will perform operations on polynomial expressions and factor polynomial expressions in one and two variables.

for Virginia Public Schools	Aligned Components of Eureka Math
Α2.ΕΟ.3.α	Algebra I M1 Lesson 8: Adding and Subtracting Polynomials
Determine sums, differences, and products of polynomials in one and	Algebra I M1 Lesson 9: Multiplying Polynomials
	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
two variables.	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions
	Algebra II M1 Lesson 1: Successive Differences in Polynomials
	Algebra II M1 Lesson 2: The Multiplication of Polynomials
	Algebra II M1 Lesson 5: Putting It All Together
	Algebra II M1 Lesson 10: The Power of Algebra–Finding Pythagorean Triples
A2.EO.3.b	Algebra I M4 Lesson 1: Multiplying and Factoring Polynomial Expressions
Factor polynomials completely in one and two variables with no more than four terms over the set of integers.	Algebra I M4 Lesson 2: Multiplying and Factoring Polynomial Expressions
	Algebra I M4 Lesson 3: Advanced Factoring Strategies for Quadratic Expressions
	Algebra I M4 Lesson 4: Advanced Factoring Strategies for Quadratic Expressions
	Algebra II M1 Lesson 10: The Power of Algebra–Finding Pythagorean Triples
	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
	Algebra II M1 Lesson 12: Overcoming Obstacles in Factoring
	Algebra II M1 Lesson 13: Mastering Factoring

for Virginia Public Schools	Aligned Components of Eureka Math
A2.EO.3.c	Algebra II M1 Lesson 3: The Division of Polynomials
Determine the quotient of polynomials in one and two variables, using	Algebra II M1 Lesson 4: Comparing Methods–Long Division, Again?
monomial, binomial, and factorable	Algebra II M1 Lesson 5: Putting It All Together
trinomial divisors.	Algebra II M1 Lesson 18: Overcoming a Second Obstacle in Factoring–What If There Is a Remainder?
	Algebra II M1 Lesson 22: Equivalent Rational Expressions
A2.EO.3.d	Algebra II M1 Lesson 2: The Multiplication of Polynomials
Represent and demonstrate equality of polynomial expressions written in different forms and verify polynomial identities including the difference of squares, sum and difference of cubes, and perfect square trinomials.	Algebra II M1 Lesson 7: Mental Math
	Algebra II M1 Lesson 8: The Power of Algebra—Finding Primes
	Algebra II M1 Lesson 10: The Power of Algebra—Finding Pythagorean Triples
	Algebra II M1 Lesson 12: Overcoming Obstacles in Factoring
	Algebra II M1 Lesson 13: Mastering Factoring

Alianad Components of Eurola Math

Mathematics Standards of Learning for Virginia Public Schools

Expressions and Operations

A2.EO.4 The student will perform operations on complex numbers.

for Virginia Public Schools	Aligned Components of <i>Eureka Math</i>		
A2.EO.4.a	Algebra II M1 Lesson 37: A Surprising Boost from Geometry		
Explain the meaning of <i>i</i> .			
A2.EO.4.b	Algebra II M1 Lesson 37: A Surprising Boost from Geometry		
Identify equivalent radical expressions containing negative rational numbers and expressions in $a + bi$ form.	Precalculus and Advanced Topics M1 Lesson 5: An Appearance of Complex Numbers		

for Virginia Public Schools	Aligned Components of Eureka Math	
A2.EO.4.c	Algebra II M1 Lesson 37: A Surprising Boost from Geometry	
Apply properties to add, subtract, and multiply complex numbers.	Precalculus and Advanced Topics M1 Lesson 4: An Appearance of Complex Numbers Precalculus and Advanced Topics M1 Lesson 5: An Appearance of Complex Numbers	

Mathematics Standards of Learning

Equations and Inequalities

A2.EI.1 The student will represent, solve, and interpret the solution to absolute value equations and inequalities in one variable.

Mathematics Standards of Learning for Virginia Public Schools

A2.EI.1.a Create an absolute value equation in one variable to model a contextual situation.	Supplemental material is necessary to address this standard.
A2.EI.1.b Solve an absolute value equation in one variable algebraically and verify the solution graphically.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too
A2.EI.1.c Create an absolute value inequality in one variable to model a contextual situation.	Supplemental material is necessary to address this standard.

for Virginia Public Schools	Aligned Components of Eureka Math	
A2.El.1.d	Supplemental material is necessary to address this standard.	
Solve an absolute value inequality in one variable and represent the solution set using set notation, interval notation, and using a number line.		
A2.El.1.e	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too	
Verify possible solution(s) to absolute value equations and inequalities in one variable algebraically, graphically, and with technology to justify the reasonableness of answer(s). Explain the solution method and interpret solutions for problems given in context.	Supplemental material is necessary to fully address this standard.	

Equations and Inequalities

A2.EI.2 The student will represent, solve, and interpret the solution to quadratic equations in one variable over the set of complex numbers and solve quadratic inequalities in one variable.

Mathematics Standards of Learning for Virginia Public Schools

A2.EI.2.a	Algebra I M4 Lesson 6: Solving Basic One-Variable Quadratic Equations		
Create a quadratic equation	Algebra I M4 Lesson 7: Creating and Solving Quadratic Equations in One Variable		
or inequality in one variable to model a contextual situation.	Algebra I M4 Lesson 23: Modeling with Quadratic Functions		
a contextual situation.	Algebra I M4 Lesson 24: Modeling with Quadratic Functions		
	Algebra I M5 Lesson 6: Modeling a Context from Data		
	Algebra I M5 Lesson 9: Modeling a Context from a Verbal Description		
	Supplemental material is necessary to address creating a quadratic inequality in one variable to model a contextual situation.		
A2.EI.2.b	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations		
Solve a quadratic equation in one variable over the set of complex numbers algebraically.	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm		
	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result		
A2.EI.2.c	Supplemental material is necessary to address this standard.		
Determine the solution to a quadratic inequality in one variable over the set of real numbers algebraically.			

for Virginia Public Schools Aligned Components of Eureka Math A2.EI.2.d Algebra I M4 Lesson 9: Graphing Quadratic Functions from Factored Form, f(x) = a(x - m)(x - n)Verify possible solution(s) to quadratic Algebra I M4 Lesson 14: Deriving the Quadratic Formula equations or inequalities in one variable Algebra I M4 Lesson 15: Using the Quadratic Formula algebraically, graphically, and with Algebra I M4 Lesson 17: Graphing Quadratic Functions from the Standard Form, $f(x) = ax^2 + bx + c$ technology to justify the reasonableness of answer(s). Explain the solution method Supplemental material is necessary to address verifying possible solution(s) to quadratic inequalities and interpret solutions for problems in one variable. given in context.

Mathematics Standards of Learning

Equations and Inequalities

A2.EI.3 The student will solve a system of equations in two variables containing a quadratic expression.

Mathematics Standards of Learning for Virginia Public Schools

A2.EI.3.a Create a linear-quadratic or quadratic-quadratic system of equations to model a contextual situation.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra II M1 Lesson 31: Systems of Equations Algebra II M1 Lesson 32: Graphing Systems of Equations Algebra II M1 Lesson 36: Overcoming a Third Obstacle–What If There Are No Real Number Solutions? Supplemental material is necessary to fully address this standard.	
A2.EI.3.b Determine the number of solutions to a linear-quadratic and quadratic-quadratic system of equations in two variables.	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too Algebra II M1 Lesson 31: Systems of Equations Algebra II M1 Lesson 32: Graphing Systems of Equations Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real Number Solutions? Supplemental material is necessary to fully address this standard.	

for Virginia Public Schools	Aligned Components of Eureka Math		
A2.EI.3.c	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too		
Solve a linear-quadratic and	Algebra II M1 Lesson 31: Systems of Equations		
quadratic-quadratic system of equations algebraically and graphically, including	Algebra II M1 Lesson 32: Graphing Systems of Equations		
situations in context.	Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real Number Solutions?		
	Supplemental material is necessary to fully address this standard.		
A2.EI.3.d	Algebra I M3 Lesson 16: Graphs Can Solve Equations Too		
Verify possible solution(s) to	Algebra II M1 Lesson 31: Systems of Equations		
linear-quadratic or quadratic-quadratic system of equations algebraically, graphically, and with technology to justify the reasonableness of answer(s). Explain the solution method and interpret solutions for problems given in context.	Algebra II M1 Lesson 32: Graphing Systems of Equations		
	Algebra II M1 Lesson 36: Overcoming a Third Obstacle to Factoring–What If There Are No Real Number Solutions?		
	Supplemental material is necessary to fully address this standard.		

Equations and Inequalities

A2.EI.4 The student will represent, solve, and interpret the solution to an equation containing rational algebraic expressions.

Aligne	d Components	of Eureka	Math

A2.EI.4.a	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
Create an equation containing a rational expression to model a contextual situation.	

for Virginia Public Schools	Aligned Components of Eureka Math
A2.EI.4.b	Algebra II M1 Lesson 26: Solving Rational Equations
Solve rational equations with real	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
solutions containing factorable algebraic expressions algebraically and graphically. Algebraic expressions should be limited to linear and quadratic expressions.	Supplemental material is necessary to address solving rational equations with real solutions containing factorable algebraic expressions graphically.
A2.EI.4.c	Algebra II M1 Lesson 26: Solving Rational Equations
Verify possible solution(s) to rational equations algebraically, graphically, and with technology to justify the reasonableness of answer(s). Explain the solution method and interpret solutions for problems given in context.	Supplemental material is necessary to address verifying possible solution(s) to rational equations graphically and with technology.
A2.EI.4.d	Algebra II M1 Lesson 26: Solving Rational Equations
Justify why a possible solution to an equation containing a rational expression might be extraneous.	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations

Equations and Inequalities

A2.EI.5 The student will represent, solve, and interpret the solution to an equation containing a radical expression.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math
Α2.ΕΙ.5.α	Algebra II M1 Lesson 28: A Focus on Square Roots
Solve an equation containing no more than one radical expression algebraically and graphically.	Algebra II M1 Lesson 29: Solving Radical Equations
A2.El.5.b	Algebra II M1 Lesson 28: A Focus on Square Roots
Verify possible solution(s) to radical equations algebraically, graphically, and with technology, to justify the reasonableness of answer(s). Explain the solution method and interpret solutions for problems given in context.	Algebra II M1 Lesson 29: Solving Radical Equations
A2.El.5.c	Algebra II M1 Lesson 28: A Focus on Square Roots
Justify why a possible solution to an equation with a square root might be extraneous.	Algebra II M1 Lesson 29: Solving Radical Equations

.

© 2024 Great Minds PBC | greatminds.org

Equations and Inequalities

A2.EI.6 The student will represent, solve, and interpret the solution to a polynomial equation.

Mathematics Standards of Learning for Virginia Public Schools

A2.EI.6.a	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
Determine a factored form of a polynomial equation, of degree three or higher, given its zeros	Algebra II M1 Lesson 14: Graphing Factored Polynomials Algebra II M1 Lesson 19: The Remainder Theorem
or the <i>x</i> -intercepts of the graph of its related function.	
A2.EI.6.b	Algebra II M1 Lesson 14: Graphing Factored Polynomials
Determine the number and type	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
of solutions (real or imaginary) of a polynomial equation of degree three or higher.	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result
A2.EI.6.c	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations
Solve a polynomial equation over the set of complex numbers.	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result
A2.EI.6.d	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
Verify possible solution(s) to polynomial equations of degree three or higher algebraically, graphically, and with technology to justify the reasonableness	Algebra II M1 Lesson 19: The Remainder Theorem
	Algebra II M1 Lesson 38: Complex Numbers as Solutions to Equations
	Algebra II M1 Lesson 39: Factoring Extended to the Complex Realm
of answer(s). Explain the solution method and interpret solutions in context.	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result

Functions

A2.F.1 The student will investigate, analyze, and compare square root, cube root, rational, exponential, and logarithmic function families, algebraically and graphically, using transformations.

Mathematics Standards of Learning for Virginia Public Schools

A2.F.1.a Distinguish between the graphs of parent functions for square root, cube root, rational, exponential, and logarithmic function families.	Algebra I M1 Lesson 3: Graphs of Exponential Functions Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions Algebra I M5 Lesson 1: Analyzing a Graph Algebra II M3 Lesson 17: Graphing the Logarithm Function Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
A2.F.1.b Write the equation of a square root, cube root, rational, exponential, and logarithmic function, given a graph, using transformations of the parent function, including $f(x) + k$; $f(kx)$; $f(x + k)$; and $kf(x)$, where k is limited to rational values. Transformations of exponential and logarithmic functions, given a graph, should be limited to a single transformation.	Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions Algebra I M4 Lesson 19: Translating Graphs of Functions Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions Supplemental material is necessary to fully address this standard.

for Virginia Public Schools	Aligned Components of Eureka Math
A2.F.1.c	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
Graph a square root, cube root,	Algebra I M4 Lesson 19: Translating Graphs of Functions
rational, exponential, and logarithmic function, given the equation, using	Algebra I M4 Lesson 20: Stretching and Shrinking Graphs of Functions
transformations of the parent function	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
including $f(x) + k$; $f(kx)$; $f(x + k)$; and	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
kf(x), where k is limited to rational values. Use technology to verify transformations of the functions.	Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions
A2.F.1.d	Supplemental material is necessary to address this standard.
Determine when two variables are directly proportional, inversely proportional, or neither, given a table of values. Write an equation and create a graph to represent a direct or inverse variation, including situations in context.	
A2.F.1.e Compare and contrast the graphs,	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
tables, and equations of square root,	Algebra II M3 Lesson 17: Graphing the Logarithm Function
cube root, rational, exponential, and logarithmic functions.	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
logantnime functions.	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions

Functions

A2.F.2 The student will investigate and analyze characteristics of square root, cube root, rational, polynomial, exponential, logarithmic, and piecewise-defined functions algebraically and graphically.

Mathematics Standards of Learning for Virginia Public Schools

A2.F.2.a	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
Determine and identify the domain, range, zeros, and intercepts of a function presented algebraically or graphically,	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
including graphs with discontinuities.	Algebra II M1 Lesson 14: Graphing Factored Polynomials
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M3 Lesson 17: Graphing the Logarithm Function
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
	Precalculus and Advanced Topics M3 Lesson 1: Solutions to Polynomial Equations
	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
A2.F.2.b	Algebra I M1 Lesson 1: Graphs of Piecewise Linear Functions
Compare and contrast the characteristics of square root, cube root, rational, polynomial, exponential, logarithmic, and piecewise-defined functions.	Algebra I M3 Lesson 15: Piecewise Functions
	Algebra I M4 Lesson 18: Graphing Cubic, Square Root, and Cube Root Functions
	Algebra I M4 Lesson 22: Comparing Quadratic, Square Root, and Cube Root Functions Represented in Different Ways
	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring

for Virginia Public Schools	Aligned Components of Eureka Math
A2.F.2.b continued	Algebra II M1 Lesson 14: Graphing Factored Polynomials
	Algebra II M1 Lesson 15: Structures of Graphs of Polynomial Functions
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M3 Lesson 8: The "WhatPower" Function
	Algebra II M3 Lesson 17: Graphing the Logarithm Function
	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
	Precalculus and Advanced Topics M3 Lesson 1: Solutions to Polynomial Equations
	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
A2.F.2.c	Algebra I M3 Lesson 12: The Graph of the Equation $y = f(x)$
Determine the intervals on which	Algebra I M3 Lesson 13: Interpreting the Graph of a Function
the graph of a function is increasing, decreasing, or constant.	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
	Algebra I M4 Lesson 10: Interpreting Quadratic Functions from Graphs and Tables
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function

for Virginia Public Schools	Aligned Components of Eureka Math
A2.F.2.d	Algebra I M4 Lesson 8: Exploring the Symmetry in Graphs of Quadratic Functions
Determine the location and value of absolute (global) maxima and absolute (global) minima of a function.	Supplemental material is necessary to fully address this standard.
A2.F.2.e	Algebra II M1 Lesson 14: Graphing Factored Polynomials
Determine the location and value	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
of relative (local) maxima or relative (local) minima of a function.	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
(local) minima of a function.	Algebra II M3 Lesson 22: Choosing a Model
A2.F.2.f	Algebra II M1 Lesson 11: The Special Role of Zero in Factoring
For any value, x , in the domain of f ,	Algebra II M1 Lesson 14: Graphing Factored Polynomials
determine $f(x)$ using a graph or equation.	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
Explain the meaning of x and $f(x)$ in context, where applicable.	Algebra II M3 Lesson 6: Euler's Number, e
	Algebra II M3 Lesson 7: Bacteria and Exponential Growth
	Algebra II M3 Lesson 17: Graphing the Logarithm Function
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
	Algebra II M3 Lesson 22: Choosing a Model
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving

for Virginia Public Schools	Aligned Components of Eureka Math
A2.F.2.g	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
Describe the end behavior of a function.	Algebra II M3 Lesson 17: Graphing the Logarithm Function
	Algebra II M3 Lesson 22: Choosing a Model
	Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
A2.F.2.h	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
Determine the equations of any vertical	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
and horizontal asymptotes of a function using a graph or equation (rational,	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
exponential, and logarithmic).	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
A2.F.2.i	Precalculus and Advanced Topics M3 Lesson 18: Inverse Functions
Determine the inverse of a function algebraically and graphically, given the equation of a linear or quadratic function (linear, quadratic, and square root). Justify and explain why two functions are inverses of each other.	Precalculus and Advanced Topics M3 Lesson 19: Restricting the Domain
A2.F.2.j	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
Graph the inverse of a function as a reflection over the line $y = x$.	Precalculus and Advanced Topics M3 Lesson 18: Inverse Functions
	Precalculus and Advanced Topics M3 Lesson 19: Restricting the Domain
A2.F.2.k	Precalculus and Advanced Topics M3 Lesson 16: Function Composition
Determine the composition of two functions algebraically and graphically.	Precalculus and Advanced Topics M3 Lesson 17: Solving Problems by Function Composition

Statistics

A2.ST.1 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on univariate quantitative data represented by a smooth curve, including a normal curve.

for Virginia Public Schools Aligned Components of Eureka Math A2.ST.1.a Algebra II M4 Lesson 13: Using Sample Data to Estimate a Population Characteristic Formulate investigative questions that Algebra II M4 Lesson 28: Drawing a Conclusion from an Experiment require the collection or acquisition Supplemental material is necessary to fully address this standard. of a large set of univariate quantitative data or summary statistics of a large set of univariate quantitative data and investigate questions using a data cycle. A2.ST.1.b Supplemental material is necessary to address this standard. Collect or acquire univariate data through research, or using surveys, observations, scientific experiments, polls, or questionnaires. Algebra II M4 Lesson 8: Distributions-Center, Shape, and Spread A2.ST.1.c Algebra II M4 Lesson 9: Using a Curve to Model a Data Distribution Examine the shape of a data set (skewed versus symmetric) that can be represented by a histogram, and sketch a smooth curve to model the distribution. A2.ST.1.d Algebra II M4 Lesson 9: Using a Curve to Model a Data Distribution Identify the properties of a normal Algebra II M4 Lesson 10: Normal Distributions distribution. Algebra II M4 Lesson 11: Normal Distributions

for Virginia Public Schools	Aligned Components of Eureka Math
A2.ST.1.e	Algebra II M4 Lesson 9: Using a Curve to Model a Data Distribution
Describe and interpret a data distribution represented by a smooth curve by analyzing measures of center, measures of spread, and shape of the curve.	Algebra II M4 Lesson 10: Normal Distributions Algebra II M4 Lesson 11: Normal Distributions
A2.ST.1.f Calculate and interpret the <i>z</i> -score for a value in a data set.	Algebra II M4 Lesson 10: Normal Distributions Algebra II M4 Lesson 11: Normal Distributions
A2.ST.1.g Compare two data points from two different distributions using <i>z</i> -scores.	Algebra II M4 Lesson 10: Normal Distributions Algebra II M4 Lesson 11: Normal Distributions
A2.ST.1.h Determine the solution to problems involving the relationship of the mean, standard deviation, and <i>z</i> -score of a data set represented by a smooth or normal curve.	Algebra II M4 Lesson 10: Normal Distributions Algebra II M4 Lesson 11: Normal Distributions
A2.ST.1.i Apply the Empirical Rule to answer investigative questions.	Algebra II M4 Lesson 9: Using a Curve to Model a Data Distribution Algebra II M4 Lesson 10: Normal Distributions Algebra II M4 Lesson 17: Margin of Error When Estimating a Population Proportion Precalculus and Advanced Topics M5 Lesson 11: Estimating Probability Distributions Empirically Precalculus and Advanced Topics M5 Lesson 12: Estimating Probability Distributions Empirically

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math
A2.ST.1.j	Algebra II M4 Lesson 8: Distributions–Center, Shape, and Spread
Compare multiple data distributions using measures of center, measures of spread, and shape of the distributions.	Algebra II M4 Lesson 18: Sampling Variability in the Sample Mean

. 0.

Statistics

A2.ST.2 The student will apply the data cycle (formulate questions; collect or acquire data; organize and represent data; and analyze data and communicate results) with a focus on representing bivariate data in scatterplots and determining the curve of best fit using linear, quadratic, exponential, or a combination of these functions.

Mathematics Standards of Learning for Virginia Public Schools

A2.ST.2.a	Supplemental material is necessary to address this standard.
Formulate investigative questions that require the collection or acquisition of bivariate data and investigate questions using a data cycle.	
A2.ST.2.b	Supplemental material is necessary to address this standard.
Collect or acquire bivariate data through research, or using surveys, observations, scientific experiments, polls, or questionnaires.	

for Virginia Public Schools	Aligned Components of Eureka Math
A2.ST.2.c	Algebra I M2 Topic D: Numerical Data on Two Variables
Represent bivariate data with a scatterplot using technology.	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
A2.ST.2.d	Algebra I M2 Lesson 12: Relationships Between Two Numerical Variables
Determine whether the relationship	Algebra I M2 Lesson 13: Relationships Between Two Numerical Variables
between two quantitative variables	Algebra I M2 Lesson 19: Interpreting Correlation
is best approximated by a linear, quadratic, exponential, or a combination of these functions.	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
A2.ST.2.e	Algebra I M2 Lesson 12: Relationships Between Two Numerical Variables
Determine the equation(s) of the function(s) that best models the relationship between two variables using technology. Curves of best fit may include a combination of linear, quadratic, or exponential (piecewise-defined) functions.	Algebra I M2 Lesson 13: Relationships Between Two Numerical Variables
	Algebra I M2 Lesson 19: Interpreting Correlation
	Algebra I M5 Lesson 7: Modeling a Context from Data
	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 17: Modeling with Polynomials—An Introduction
	Algebra II M1 Lesson 20: Modeling Riverbeds with Polynomials
	Algebra II M1 Lesson 21: Modeling Riverbeds with Polynomials
	Algebra II M3 Lesson 22: Choosing a Model

for Virginia Public Schools	Aligned Components of Eureka Math
A2.ST.2.f	Algebra I M2 Lesson 19: Interpreting Correlation
Use the correlation coefficient to designate the goodness of fit of a linear function using technology.	Algebra I M2 Lesson 20: Analyzing Data Collected on Two Variables
	Algebra I M5 Lesson 7: Modeling a Context from Data
A2.ST.2.g	Algebra II M3 Lesson 1: Integer Exponents
Make predictions, decisions, and critical judgments using data, scatterplots, or the equation(s) of the mathematical model.	Algebra II M3 Lesson 23: Bean Counting
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M4 Lesson 2: Calculating Probabilities of Events Using Two-Way Tables
	Algebra II M4 Lesson 14: Sampling Variability in the Sample Proportion
A2.ST.2.h	Algebra II M1 Lesson 16: Modeling with Polynomials—An Introduction
Evaluate the reasonableness of a mathematical model of a contextual situation.	Algebra II M1 Lesson 27: Word Problems Leading to Rational Equations
	Algebra II M3 Lesson 1: Integer Exponents
	Algebra II M3 Lesson 6: Euler's Number, e
	Algebra II M3 Lesson 22: Choosing a Model
	Algebra II M3 Lesson 24: Solving Exponential Equations
	Algebra II M3 Lesson 27: Modeling with Exponential Functions

Mathematics Standards of Learning

. . .

Statistics

A2.ST.3 The student will compute and distinguish between permutations and combinations.

Mathematics Standards of Learning for Virginia Public Schools	Aligned Components of Eureka Math
A2.ST.3.a	Precalculus and Advanced Topics M5 Lesson 2: Counting Rules–The Fundamental Counting Principle
Compare and contrast permutations and combinations to count the number of ways that events can occur.	and Permutations
	Precalculus and Advanced Topics M5 Lesson 3: Counting Rules–Combinations
	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities
A2.ST.3.b	Precalculus and Advanced Topics M5 Lesson 2: Counting Rules–The Fundamental Counting Principle
Calculate the number of permutations	and Permutations
of n objects taken r at a time.	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities
A2.ST.3.c	Precalculus and Advanced Topics M5 Lesson 3: Counting Rules–Combinations
Calculate the number of combinations of <i>n</i> objects taken <i>r</i> at a time.	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities
A2.ST.3.d Use permutations and combinations as counting techniques to solve contextual problems.	Precalculus and Advanced Topics M5 Lesson 2: Counting Rules–The Fundamental Counting Principle and Permutations
	Precalculus and Advanced Topics M5 Lesson 3: Counting Rules–Combinations
	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities
A2.ST.3.e	Precalculus and Advanced Topics M5 Lesson 2: Counting Rules–The Fundamental Counting Principle
Calculate and verify permutations and combinations using technology.	and Permutations
	Precalculus and Advanced Topics M5 Lesson 3: Counting Rules–Combinations
	Precalculus and Advanced Topics M5 Lesson 4: Using Permutations and Combinations to Compute Probabilities

_