About Eureka Math

EUREKA

MATH

Created by Great Minds[®], a mission-driven Public Benefit Corporation, Eureka Math® helps teachers deliver unparalleled math instruction that provides students with a deep understanding and fluency in math. Crafted by teachers and math scholars, the curriculum carefully sequences the mathematical progressions to maximize coherence from Prekindergarten through Precalculus-a principle tested and proven to be essential in students' mastery of math.

Teachers and students using Eureka Math find the trademark "Aha!" moments in Eureka Math to be a source of joy and inspiration, lesson after lesson, year after year.

Aligned

Great Minds offers detailed analyses that demonstrate how each grade of Eureka Math aligns with specific state standards. Access these free alignment studies at greatminds.org/state-studies.

Data

Schools and districts nationwide are experiencing student growth and impressive test scores after using Eureka Math. See their stories and data at greatminds.org/data.

Full Suite of Resources

Great Minds offers the *Eureka Math* curriculum as PDF downloads for free, noncommercial use. Access the free PDFs at greatminds.org/ math/curriculum.

The teacher-writers who created the curriculum have also developed essential resources, available only from Great Minds, including the following:

- Printed material in English and Spanish
- Digital resources
- Professional development
- Classroom tools and manipulatives
- Teacher support materials
- Parent resources

Mathematical Process Goals for Students	Aligned Components of Eureka Math
Mathematical Problem Solving	Lessons in every module engage students in mathematical processes.
Mathematical Communication	
Mathematical Reasoning	
Mathematical Connections	
Mathematical Representations	

Characteristics of Functions

MA.CF.1 The student will identify and analyze the properties of polynomial, rational, piecewise-defined, absolute value, radical, and step functions and sketch the graphs of the functions.

Mathematics Standards of Learning for Virginia Public Schools

· · · · · · · · · · · · · · · · · · ·	.
MA.CF.1.a	Supplemental material is necessary to address this standard.
Use mathematical reasoning to identify polynomial, rational, piecewise-defined, absolute value, radical, and step functions, given an equation or graph.	
MA.CF.1.b	This standard is addressed by the lessons aligned to its subsections.
Given multiple representations of a polynomial, rational, piecewise-defined, absolute value, radical, and step function, analyze:	Supplemental material is necessary to address piecewise-defined, absolute value, radical, and step functions.
MA.CF.1.b.i	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
domain and range;	Supplemental material is necessary to address range.
MA.CF.1.b.ii	Algebra II M1 Lesson 14: Graphing Factored Polynomials
roots (including complex roots);	Algebra II M1 Lesson 40: Obstacles Resolved—A Surprising Result
	Precalculus and Advanced Topics M3 Lesson 1: Solutions to Polynomial Equations
MA.CF.1.b.iii	Algebra II M1 Lesson 14: Graphing Factored Polynomials
intercepts;	Precalculus and Advanced Topics M3 Lesson 1: Solutions to Polynomial Equations
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions

Aligned Components of Eureka Math
Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
Supplemental material is necessary to address oblique/slant asymptotes.
Supplemental material is necessary to address this standard.
Supplemental material is necessary to address this standard.
Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
Precalculus and Advanced Topics M3 Lesson 12: End Behavior of Rational Functions
Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
Algebra II M1 Lesson 14: Graphing Factored Polynomials

for Virginia Public Schools	Aligned Components of Eureka Math
MA.CF.1.c	Algebra II M1 Lesson 14: Graphing Factored Polynomials
Sketch the graph of a polynomial, rational, piecewise-defined, absolute value, radical, and step function.	Algebra II M1 Lesson 15: Structure in Graphs of Polynomial Functions
	Precalculus and Advanced Topics M3 Lesson 13: Horizontal and Vertical Asymptotes of Graphs of Rational Functions
	Precalculus and Advanced Topics M3 Lesson 14: Graphing Rational Functions
	Precalculus and Advanced Topics M3 Lesson 15: Transforming Rational Functions

Characteristics of Functions

MA.CF.2 The student will determine the limit of a function if it exists.

for Virginia Public Schools	Aligned Components of Eureka Math
MA.CF.2.a	Supplemental material is necessary to address this standard.
Verify estimates about the limit of a function using graphing technology.	
MA.CF.2.b	Supplemental material is necessary to address this standard.
Determine the limit of a function algebraically and verify with graphing technology.	
MA.CF.2.c	Supplemental material is necessary to address this standard.
Determine the limit of a function numerically and verify with graphing technology.	

Mathematics Standards of Learning for Virginia Public Schools Aligned Components of Eureka Math Supplemental material is necessary to address this standard. MA.CF.2.d Use proper limit notation, including when describing the end behavior of a function. MA.CF.2.e Supplemental material is necessary to address this standard. As the variable approaches a finite number. Supplemental material is necessary to address this standard. MA.CF.2.e.i determine the limit of a function numerically by direct substitution; MA.CF.2.e.ii Supplemental material is necessary to address this standard. determine the limit of a function using algebraic manipulation; Supplemental material is necessary to address this standard. MA.CF.2.e.iii estimate the limit of a function using a table: and MA.CF.2.e.iv Supplemental material is necessary to address this standard. determine the limit of a function from a given graph. MA.CF.2.f Supplemental material is necessary to address this standard. As the variable approaches positive or negative infinity, analyze the limit of a function to describe the end behavior.

Characteristics of Functions

MA.CF.3 The student will analyze and describe the continuity of functions.

Mathematics Standards of Learning for Virginia Public Schools

MA.CF.3.a Describe continuity of a function.	Supplemental material is necessary to address this standard.
MA.CF.3.b Use mathematical notation to communicate and describe the continuity of functions including polynomial, rational, piecewise, absolute value, radical, and step function, using graphical and algebraic methods.	Supplemental material is necessary to address this standard.
MA.CF.3.c Prove continuity at a point, using the definition.	Supplemental material is necessary to address this standard.
MA.CF.3.d Classify types of discontinuity based on which condition of continuity is violated.	Supplemental material is necessary to address this standard.

Functional Relationships

MA.FR.1 The student will analyze compositions of functions to determine and verify inverses of functions.

for Virginia Public Schools	Aligned Components of Eureka Math
MA.FR.1.a	Precalculus and Advanced Topics M3 Lesson 16: Function Composition
Construct the composition of functions algebraically and graphically.	Precalculus and Advanced Topics M3 Lesson 17: Solving Problems by Function Composition
MA.FR.1.b	Precalculus and Advanced Topics M3 Lesson 16: Function Composition
Determine the domain and range of composite functions algebraically and graphically.	Precalculus and Advanced Topics M3 Lesson 17: Solving Problems by Function Composition
MA.FR.1.c	Precalculus and Advanced Topics M3 Lesson 16: Function Composition
Develop the inverse of a function	Precalculus and Advanced Topics M3 Lesson 17: Solving Problems by Function Composition
algebraically and graphically.	Precalculus and Advanced Topics M3 Topic C: Inverse Functions
MA.FR.1.d	Precalculus and Advanced Topics M3 Lesson 18: Inverse Functions
Compare the domain and range of the inverse of a function with the original function, both algebraically and graphically.	
MA.FR.1.e	Precalculus and Advanced Topics M3 Lesson 19: Restricting the Domain
Use mathematical reasoning	
to generalize and communicate the criteria for an inverse function to exist.	
chiend for an inverse function to exist.	

Functional Relationships

MA.FR.2 The student will analyze the characteristics of exponential and logarithmic functions, and sketch the graphs of the functions.

Mathematics Standards of Learning for Virginia Public Schools

for Virginia Public Schools	Aligned Components of Eureka Math
MA.FR.2.a Generalize characteristics of exponential and logarithmic functions from an equation or a graph.	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
MA.FR.2.b Define <i>e</i> and estimate its value.	Precalculus and Advanced Topics M3 Lesson 20: Inverses of Logarithmic and Exponential Functions
MA.FR.2.c Convert between equations written in logarithmic and exponential form.	Algebra II M3 Lesson 8: The "WhatPower" Function
MA.FR.2.d Use laws of exponents and properties of logarithms to solve equations and simplify expressions.	Algebra II M3 Lesson 7: Bacteria and Exponential Growth Algebra II M3 Lesson 11: The Most Important Property of Logarithms Algebra II M3 Lesson 12: Properties of Logarithms Algebra II M3 Lesson 13: Changing the Base Algebra II M3 Lesson 14: Solving Logarithmic Equations Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving

for Virginia Public Schools	Aligned Components of Eureka Math
MA.FR.2.e	Algebra II M3 Lesson 9: Logarithms–How Many Digits Do You Need?
Represent contextual problems, using	Algebra II M3 Lesson 15: Why Were Logarithms Developed?
exponential and logarithmic functions,	Algebra II M3 Lesson 23: Bean Counting
to include common and natural logarithms.	Algebra II M3 Lesson 24: Solving Exponential Equations
5	Algebra II M3 Lesson 26: Percent Rate of Change
	Algebra II M3 Lesson 27: Modeling with Exponential Functions
	Algebra II M3 Lesson 28: Newton's Law of Cooling, Revisited
	Precalculus and Advanced Topics M3 Lesson 21: Logarithmic and Exponential Problem Solving
MA.FR.2.f	Algebra II M3 Lesson 17: Graphing the Logarithm Function
Sketch the graph of exponential and logarithmic functions and identify asymptotes, end behavior, intercepts, domain, and range.	Algebra II M3 Lesson 18: Graphs of Exponential Functions and Logarithmic Functions
	Algebra II M3 Lesson 19: The Inverse Relationship Between Logarithmic and Exponential Functions
	Algebra II M3 Lesson 20: Transformations of the Graphs of Logarithmic and Exponential Functions
	Algebra II M3 Lesson 21: The Graph of the Natural Logarithm Function
	Precalculus and Advanced Topics M3 Lesson 20: Inverses of Logarithmic and Exponential Functions

Functional Relationships

MA.FR.3 The student will analyze sequences and finite series, and model and solve problems in context using sequences and series.

for Virginia Public Schools	Aligned Components of Eureka Math
MA.FR.3.a	Algebra II M3 Lesson 29: The Mathematics Behind a Structured Savings Plan
Use and interpret the notation: Σ , n , n^{th} , and a_n .	

Mathematics Standards of Learning

for Virginia Public Schools	Aligned Components of Eureka Math
MA.FR.3.b	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
Derive the formulas associated with arithmetic and geometric sequences and series.	Algebra II M3 Lesson 26: Percent Rate of Change
MA.FR.3.c	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
Determine the n^{th} term, a_n , for an arithmetic or geometric sequence.	Algebra II M3 Lesson 26: Percent Rate of Change
MA.FR.3.d Determine the sum, S_n , if it exists, of an arithmetic or geometric series.	Algebra II M3 Lesson 29: The Mathematics Behind a Structured Savings Plan
MA.FR.3.e	Algebra II M3 Lesson 25: Geometric Sequences and Exponential Growth and Decay
Model and solve problems in context,	Algebra II M3 Lesson 26: Percent Rate of Change
using sequences and series.	Algebra II M3 Lesson 29: The Mathematics Behind a Structured Savings Plan
MA.FR.3.f	Supplemental material is necessary to address this standard.
Distinguish between a convergent and divergent series.	
MA.FR.3.g	Supplemental material is necessary to address this standard.
Describe convergent series in relation to the concept of a limit.	

Mathematics Standards of Learning

Analytic Geometry

MA.AG.1 The student will identify and analyze the properties of conic sections and sketch a graph given an equation.

Mathematics Standards of Learning for Virginia Public Schools

MA.AG.1.a Given a translation or rotation matrix, determine an equation for the transformed function or conic section.	Supplemental material is necessary to address this standard.
MA.AG.1.b Convert between standard and general forms of conic equations by completing the square.	Supplemental material is necessary to address this standard.
MA.AG.1.c Graph conic sections from equations written in general or standard form using transformations.	Precalculus and Advanced Topics M3 Lesson 7: Curves from Geometry Precalculus and Advanced Topics M3 Lesson 8: Curves from Geometry
MA.AG.1.d Identify characteristics of conic sections including center, vertices, axes, symmetry, foci, directrix, eccentricity, and asymptotes.	Precalculus and Advanced Topics M3 Lesson 6: Curves in the Complex Plane Precalculus and Advanced Topics M3 Lesson 7: Curves from Geometry Precalculus and Advanced Topics M3 Lesson 8: Curves from Geometry
MA.AG.1.e Represent applications of conic sections.	Supplemental material is necessary to address this standard.

Analytic Geometry

MA.AG.2 The student will use parametric equations to model and solve problems in context.

Mathematics Standards of Learning for Virginia Public Schools

Aligned Components of Eureka Math

MA.AG.2.a	Supplemental material is necessary to address this standard.
Graph and analyze parametric equations and use the graph to determine solutions.	
MA.AG.2.b	Supplemental material is necessary to address this standard.
Use parametric equations to model contextual problems, including motion over time.	

Analytic Geometry

MA.AG.3 The student will perform operations with vectors in the coordinate plane.

for Virginia Public Schools	Aligned Components of Eureka Math
MA.AG.3.a	Precalculus and Advanced Topics M2 Topic D: Vectors in Plane and Space
Use vector notation.	
MA.AG.3.b	Precalculus and Advanced Topics M2 Lesson 5: Coordinates of Points in Space
Perform the operations of addition, subtraction, and scalar multiplication, graphically and algebraically on vectors.	Precalculus and Advanced Topics M2 Lesson 6: Linear Transformations as Matrices
	Precalculus and Advanced Topics M2 Lesson 17: Vectors in the Coordinate Plane
	Precalculus and Advanced Topics M2 Lesson 18: Vectors and Translation Maps
	Precalculus and Advanced Topics M2 Lesson 19: Directed Line Segments and Vectors
	Precalculus and Advanced Topics M2 Lesson 20: Vectors and Stone Bridges
	Precalculus and Advanced Topics M2 Lesson 23: Why Are Vectors Useful?
	Precalculus and Advanced Topics M2 Lesson 24: Why Are Vectors Useful?

MA.AG.3.c Find the dot (inner) product of two vectors and use it to determine the angle between two vectors.	Supplemental material is necessary to address this standard.
MA.AG.3.d Determine if two vectors are orthogonal.	Supplemental material is necessary to address this standard.
MA.AG.3.e Express complex numbers in vector notation.	Precalculus and Advanced Topics M1 Lesson 6: Complex Numbers as Vectors
MA.AG.3.f Verify properties of the dot product.	Supplemental material is necessary to address this standard.
MA.AG.3.g Determine the components of a vector.	Precalculus and Advanced Topics M2 Lesson 19: Directed Line Segments and Vectors
MA.AG.3.h Determine the norm (magnitude) of a vector.	Precalculus and Advanced Topics M2 Lesson 17: Vectors in the Coordinate Plane Precalculus and Advanced Topics M2 Lesson 18: Vectors and Translation Maps Precalculus and Advanced Topics M2 Lesson 20: Vectors and Stone Bridges
MA.AG.3.i Find a unit vector in the same direction of a given vector.	Supplemental material is necessary to address this standard.
MA.AG.3.j Apply vectors to problems in context.	Precalculus and Advanced Topics M2 Lesson 17: Vectors in the Coordinate Plane Precalculus and Advanced Topics M2 Lesson 20: Vectors and Stone Bridges Precalculus and Advanced Topics M2 Lesson 23: Why Are Vectors Useful?

Analytic Geometry

MA.AG.4 The student will investigate and identify the characteristics of the graphs of polar equations.

Mathematics Standards of Learning for Virginia Public Schools

MA.AG.4.a	Supplemental material is necessary to address this standard.
Classify polar equations (rose, cardioid, limaçon, lemniscate, spiral, and circle), given the graph or the equation.	
MA.AG.4.b	Supplemental material is necessary to address this standard.
Determine the effects of changes in the parameters of polar equations on the graph, using graphing technology.	
MA.AG.4.c	Supplemental material is necessary to address this standard.
Convert between polar and rectangular forms of coordinates.	
MA.AG.4.d	Precalculus and Advanced Topics M1 Lesson 13: Trigonometry and Complex Numbers
Convert between complex numbers written in rectangular form and polar form.	
MA.AG.4.e	Supplemental material is necessary to address this standard.
Convert equations between polar and rectangular forms.	
MA.AG.4.f	Supplemental material is necessary to address this standard.
Determine and verify the intersection of the graphs of two polar equations, using graphing technology.	

Analytic Geometry

MA.AG.5 The student will use matrices to organize data and will add and subtract matrices, multiply matrices, multiply matrices by a scalar, and use matrices to solve systems of equations.

for Virginia Public Schools Aligned Components of Eureka Math MA.AG.5.a Precalculus and Advanced Topics M2 Lesson 2: Networks and Matrix Arithmetic Multiply matrices by a scalar. Precalculus and Advanced Topics M2 Lesson 3: Matrix Arithmetic in Its Own Right Precalculus and Advanced Topics M2 Lesson 4: Linear Transformations Review Precalculus and Advanced Topics M2 Lesson 5: Coordinates of Points in Space Precalculus and Advanced Topics M2 Lesson 6: Linear Transformations as Matrices Precalculus and Advanced Topics M2 Lesson 26: Projecting a 3-D Object onto a 2-D Plane Precalculus and Advanced Topics M2 Lesson 27: Designing Your Own Game MA.AG.5.b Precalculus and Advanced Topics M1 Lesson 22: Modeling Video Game Motion with Matrices Add, subtract, and multiply matrices. Precalculus and Advanced Topics M1 Lesson 24: Matrix Notation Encompasses New Transformations! Precalculus and Advanced Topics M1 Lesson 25: Matrix Multiplication and Addition Precalculus and Advanced Topics M2 Lesson 2: Networks and Matrix Arithmetic Precalculus and Advanced Topics M2 Lesson 3: Matrix Arithmetic in Its Own Right Precalculus and Advanced Topics M2 Topic B: Linear Transformations of Planes and Space Precalculus and Advanced Topics M2 Topic E: First-Person Video Games-Projection Matrices MA.AG.5.c Precalculus and Advanced Topics M2 Topic C: Systems of Linear Equations Represent problems with a system of no more than three linear equations. MA.AG.5.d Precalculus and Advanced Topics M2 Topic C: Systems of Linear Equations Express a system of linear equations as a matrix equation.

Mathematics Standards of Learning

for Virginia Public Schools	Aligned Components of Eureka Math
MA.AG.5.e	Precalculus and Advanced Topics M2 Topic C: Systems of Linear Equations
Solve a system of equations using matrices.	
MA.AG.5.f	Precalculus and Advanced Topics M1 Lesson 28: When Can We Reverse a Transformation?
Determine the inverse of a two-by-two or three-by-three matrix using paper and pencil.	Precalculus and Advanced Topics M1 Lesson 29: When Can We Reverse a Transformation?
	Supplemental material is necessary to address determining the inverse of three-by-three matrices using paper and pencil.
MA.AG.5.g	Precalculus and Advanced Topics M1 Lesson 28: When Can We Reverse a Transformation?
Verify two matrices are inverses using matrix multiplication.	Precalculus and Advanced Topics M1 Lesson 29: When Can We Reverse a Transformation?
MA.AG.5.h	Precalculus and Advanced Topics M1 Lesson 25: Matrix Multiplication and Addition
Verify the commutative and associative properties for matrix addition and multiplication.	Precalculus and Advanced Topics M2 Lesson 10: Matrix Multiplication Is Not Commutative
	Precalculus and Advanced Topics M2 Lesson 12: Matrix Multiplication Is Distributive and Associative

Mathematics Standards of Learning