7-8 | Alaska Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.RP. 1

Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.

7.RP. 2

Recognize and represent proportional relationships between quantities. Make basic inferences or logical predictions from proportional relationships.

7.RP.2.a

Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin).

7.RP.2.b

Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships
in real-world situations.

7-8 M2 Lesson 12: An Experiment with Ratios and Rates
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships

This standard is fully addressed by the lessons aligned to its subsections.
7-8 M2 Lesson 12: An Experiment with Ratios and Rates
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 19: Proportional Reasoning and Percents

7-8 M2 Lesson 19: Proportional Reasoning and Percents

[^0]
Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.RP.2.c

Represent proportional relationships by equations and multiple representations such as tables, graphs, diagrams, sequences, and contextual situations.

7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
7-8 M2 Lesson 16: Applying Proportional Reasoning
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Lesson 19: Proportional Reasoning and Percents

7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 15: Relating Representations of Proportional Relationships

Understand the concept of unit rate and show it on a coordinate plane. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.

7.RP. 3

Use proportional relationships to solve multi-step ratio and percent problems.

7-8 M2 Lesson 16: Applying Proportional Reasoning
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Topic D: Percents and Proportional Relationships

The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

Alaska Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

7.NS. 1

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

7.NS.1.a

Show that a number and its opposite have a sum of 0 (additive inverses). Describe situations in which opposite quantities combine to make 0 .

7.NS.1.b

Understand addition of rational numbers ($p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative). Interpret sums of rational numbers by describing real-world contexts

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M1 Lesson 1: Adding Integers and Rational Numbers

7-8 M1 Lesson 1: Adding Integers and Rational Numbers

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.NS.1.c

Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

7.NS.1.d

Apply properties of operations as strategies to add and subtract rational numbers.

7.NS. 2

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers and use equivalent representations.

7.NS.2.a

Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.NS.2.b

Understand that integers can be divided provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-\left(\frac{p}{q}\right)=\frac{-p}{q}=\frac{p}{-q}$. Interpret quotients of rational numbers by describing real-world contexts.

7.NS.2.c

Apply and name properties of operations used as strategies to multiply and divide rational numbers.

7.NS.2.d

Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.

7.NS.2.e

Convert between equivalent fractions, decimals, or percents.

7.NS. 3

Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)

7-8 M1 Lesson 8: Dividing Integers and Rational Numbers

7-8 M1 Topic B: Multiply and Divide Rational Numbers

7-8 M1 Lesson 9: Decimal Expansions of Rational Numbers

6 M1 Lesson 22: Introduction to Percents

7-8 M1 Lesson 9: Decimal Expansions of Rational Numbers
7-8 M1 Lesson 1: Adding Integers and Rational Numbers
7-8 M1 Lesson 3: Finding Distances to Find Differences
7-8 M1 Lesson 4: Subtracting Integers
7-8 M1 Lesson 5: Subtracting Rational Numbers
7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
7-8 M1 Lesson 8: Dividing Integers and Rational Numbers

The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.NS. 1

Classify real numbers as either rational (the ratio of two integers, a terminating decimal number, or a repeating decimal number) or irrational.

8.NS. 2

Order real numbers, using approximations of irrational numbers, locating them on a number line.

8.NS. 3

Identify or write the prime factorization of a number using exponents.

```
7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 22: Rational and Irrational Numbers
7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes
```

7-8 M1 Lesson 21: Approximating Values of Roots
7-8 M1 Lesson 22: Rational and Irrational Numbers

6 M2 Lesson 3: The Greatest Common Factor
6 M4 Lesson 3: Exploring Exponents

Expressions and Equations

Use properties of operations to generate equivalent expressions.

Alaska Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

7.EE. 1

Apply properties of operations as strategies to add, subtract, factor, expand and simplify linear expressions with rational coefficients.

7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations

Alaska Mathematics Standards

7.EE. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 21: Discount, Markup, Sales Tax, and Tip
7-8 M2 Lesson 22: Percent Increase and Percent Decrease

7-8 M2 Lesson 22: Percent Increase and Percent Decrease

Expressions and Equations

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.EE. 3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form and assess the reasonableness of answers using mental computation and estimation strategies.

7.EE. 4

Use variables to represent quantities in a real-world or mathematical problem, and construct multi-step equations and inequalities to solve problems by reasoning about the quantities.

7.EE.4.a

Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers.

Alaska Mathematics Standards

7.EE.4.b

Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities

Expressions and Equations Work with radicals and integer exponents.

Alaska Mathematics Standards

8.EE. 1

Apply the properties (product, quotient, power, zero, negative exponents, and rational exponents) of integer exponents to generate equivalent numerical expressions.

8.EE. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M1 Lesson 11: Products of Exponential Expressions with Positive Whole-Number Exponents
7-8 M1 Lesson 12: More Properties of Exponents
7-8 M1 Lesson 13: Making Sense of Integer Exponents
Supplemental material is necessary to address rational exponents.
7-8 M1 Lesson 18: Solving Equations with Squares and Cubes
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 21: Approximating Values of Roots
7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes

7-8 M1 Lesson 12: More Properties of Exponents
7-8 M1 Lesson 13: Making Sense of Integer Exponents
Supplemental material is necessary to address rational exponents.

[^1]
Alaska Mathematics Standards

8.EE. 3

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.

8.EE. 4

Perform operations with numbers expressed in scientific notation, including problems where both standard notation and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M1 Lesson 10: Large and Small Positive Numbers
7-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific Notation
7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation
7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation
7-8 M1 Lesson 17: Get to the Point

7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation
7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation
7-8 M1 Lesson 17: Get to the Point

Expressions and Equations
Understand the connections between proportional relationships, lines, and linear equations.

Alaska Mathematics Standards

8.EE. 5

Graph linear equations such as $y=m x+b$, interpreting m as the slope or rate of change of the graph and b as the y-intercept or starting value. Compare two different proportional relationships represented in different ways.

Aligned Components of Eureka Math²

```
7-8 M4 Lesson 4: Comparing Proportional Relationships
7-8 M4 Lesson 5: Proportional Relationships and Slope
7-8 M4 Lesson 6: Slopes of Rising Lines and Falling Lines
7-8 M4 Lesson 7: Using Coordinates to Find Slope
7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line
```


Alaska Mathematics Standards

8.EE. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M4 Lesson 5: Proportional Relationships and Slope
7-8 M4 Lesson 6: Slopes of Rising Lines and Falling Lines
7-8 M4 Lesson 7: Using Coordinates to Find Slope
7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line

Expressions and Equations

Analyze and solve linear equations and pairs of simultaneous linear equations.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE. 7

Solve linear equations in one variable.

8.EE.7.a

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a$, $a=a$, or $a=b$ results (where a and b are different numbers).

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M2 Lesson 8: Solving Equations with Rational Coefficients
7-8 M2 Lesson 9: Linear Equations with More Than One Solution
7-8 M2 Lesson 10: Another Possible Number of Solutions

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.7.b

Solve linear equations with rational coefficients, including equations whose solutions require expanding expressions using the distributive property and combining like terms.

8.EE. 8

Analyze and solve systems of linear equations.

8.EE.8.a

Show that the solution to a system of two linear equations in two variables is the intersection of the graphs of those equations because points of intersection satisfy both equations simultaneously.

8.EE.8.b

Solve systems of two linear equations in two variables and estimate solutions by graphing the equations. Simple cases may be done by inspection.

8.EE.8.c

Solve real-world and mathematical problems leading to two linear equations in two variables.

7-8 M2 Lesson 6: Expressing Repeating Decimals as Fractions
7-8 M2 Topic B: Multi-Step Equations and Their Solutions

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M4 Lesson 11: Introduction to Systems of Linear Equations

7-8 M4 Lesson 12: Identifying Solutions
7-8 M4 Lesson 13: More Than One Solution
7-8 M4 Lesson 16: Choosing a Solution Method
7-8 M4 Lesson 19: Back to the Coordinate Plane
7-8 M4 Lesson 20: Modeling a Real-World Problem
7-8 M4 Topic C: Solving Systems of Linear Equations
7-8 M4 Topic D: Writing and Solving Systems of Linear Equations

7-8 M4 Lesson 17: Writing and Solving Systems of Equations for Mathematical Problems
7-8 M4 Lesson 18: Writing and Solving Systems of Equations for Real-World Problems
7-8 M4 Lesson 20: Modeling a Real-World Problem

Geometry

Draw, construct, and describe geometrical figures and describe the relationships between them.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.G. 1

Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

7.G. 2

Draw (freehand, with ruler and protractor, and with technology) geometric shapes including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

7.G. 3

Describe the two-dimensional figures, i.e., cross-section, that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.

7-8 M3 Topic D: Scale Drawings and Dilations

7-8 M3 Lesson 1: Sketching and Constructing Geometric Figures
7-8 M3 Lesson 2: Conditions of Unique Triangles
7-8 M3 Lesson 3: Exploring and Constructing Circles

7-8 M5 Lesson 13: Understanding Planes and Cross Sections

7-8 M5 Lesson 14: Cross Section Scavenger Hunt
7-8 M5 Lesson 15: Proportionality and Scale Factor of Cross Sections

Geometry

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.G. 4

Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.

7.G. 5

Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

7.G. 6

Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
7-8 M3 Lesson 3: Exploring and Constructing Circles
7-8 M3 Lesson 4: Area and Circumference of a Circle
7-8 M3 Lesson 5: Area and Circumference of Circular Re
7-8 M3 Lesson 6: Watering a Lawn
7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 2: Using Equivalent Expressions to Solve
7-8 M2 Lesson 7: Solving Multi-Step Equations
7-8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
7-8 M5 Lesson 16: Volume of Prisms
7-8 M5 Lesson 18: Designing a Fish Tank
7-8 M5 Lesson 21: Volume of Composite Solids
7-8 M3 Lesson 4: Area and Circumference of a Circle
7-8 M3 Lesson 5: Area and Circumference of Circular Regions
7-8 M3 Lesson 6: Watering a Lawn
7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 7: Solving Multi-Step Equations
7-8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
7-8 M5 Lesson 16: Volume of Prisms
7-8 M5 Lesson 21: Volume of Composite Solids

Geometry

Understand congruence and similarity using physical models, transparencies, or geometry software.

Alaska Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

8.G. 1

Through experimentation, verify the properties of rotations, reflections, and translations (transformations) to figures on a coordinate plane.

8.G.1.a	7-8 M3 Lesson 7: Motions of the Plane
Lines are taken to lines, and line segments to line segments of the same length.	7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions
8.G.1.b Angles are taken to angles of the same measure.	7-8 M3 Lesson 7: Motions of the Plane 7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions
8.G.1.c Parallel lines are taken to parallel lines.	7-8 M3 Lesson 7: Motions of the Plane 7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.G. 2

Demonstrate understanding of congruence by applying a sequence of translations, reflections, and rotations on two-dimensional figures. Given two congruent figures, describe a sequence that exhibits the congruence between them.

8.G. 3

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

```
7-8 M3 Lesson 10: Sequencing the Rigid Motions
7-8 M3 Lesson 11: Showing Figures Are Congruent
7-8 M3 Lesson 12: Lines Cut by a Transversal
```

7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane

8.G. 4

Demonstrate understanding of similarity,

7-8 M3 Lesson 27: Similar Figures

7-8 M3 Lesson 28: Exploring Angles in Similar Triangles

Alaska Mathematics Standards

8.G. 5

Justify using informal arguments to establish facts about

- the angle sum of triangles (sum of the interior angles of a triangle is 180°),
- measures of exterior angles of triangles,
- angles created when parallel lines are cut by a transversal (e.g., alternate interior angles), and
- angle-angle criterion for similarity of triangles.

Aligned Components of Eureka Math²

```
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 13: Angle Sum of a Triangle
7-8 M3 Lesson 14: Exterior Angles of Triangles
7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
```


Geometry

Understand and apply the Pythagorean Theorem.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.G.6	7-8 M1 Lesson 19: The Pythagorean Theorem
Explain the Pythagorean Theorem and its converse.	7-8 M3 Lesson 15: Proving the Pythagorean Theorem 7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
8.G.7	7-8 M1 Lesson 19: The Pythagorean Theorem
Apply the Pythagorean Theorem to	7-8 M3 Lesson 16: Proving the Converse of the Pythagorean Theorem
determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	7-8 M3 Lesson 17: Applications of the Pythagorean Theorem 7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths 7-8 M5 Lesson 19: Volumes of Pyramids and Cones

Alaska Mathematics Standards

8.G. 8

Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

Geometry

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

Alaska Mathematics Standards

Aligned Components of Eureka Math²

8.G. 9

Identify and apply the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Statistics and Probability

Use random sampling to draw inferences about a population.

Alaska Mathematics Standards

7.SP. 1

Understand that statistics can be used to gain information about a population by examining a reasonably sized sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M3 Lesson 17: Applications of the Pythagorean Theorem
-2
7-8 M5 Topic D: Volume
Aligned Components of Eureka Math ${ }^{2}$

```
7-8 M6 Lesson 10: Populations and Samples
7-8 M6 Lesson 11: Selecting a Sample
7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean
```


Alaska Mathematics Standards

7.SP. 2

Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions

Aligned Components of Eureka Math ${ }^{2}$

7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean
7-8 M6 Lesson 13: Sampling Variability and the Effect of Sample Size
7-8 M6 Lesson 14: Sampling Variability When Estimating a Population Proportion

Statistics and Probability

Draw informal comparative inferences about two populations.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.SP. 3

Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.

7.SP. 4

Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.

7-8 M6 Topic D: Comparing Populations

7-8 M6 Topic D: Comparing Populations

Statistics and Probability

Investigate chance processes and develop, use, and evaluate probability models.

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.SP. 5

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

7.SP. 6

Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.

7.SP. 7

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

7-8 M6 Lesson 1: What Is Probability?

7-8 M6 Lesson 1: What Is Probability?

7-8 M6 Lesson 2: Outcomes of Chance Experiments

7-8 M6 Lesson 5: Outcomes That Are Not Equally Likely

7-8 M6 Lesson 7: Picking Blue

7-8 M6 Lesson 6: The Law of Large Numbers

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

7.SP.7.a

Design a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.

7-8 M6 Lesson 3: Theoretical Probability

7-8 M6 Lesson 6: The Law of Large Numbers

7-8 M6 Lesson 6: The Law of Large Numbers
7-8 M6 Lesson 7: Picking Blue

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M6 Lesson 4: Multistage Experiments

7-8 M6 Lesson 4: Multistage Experiments

7.SP.8.b

Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

Alaska Mathematics Standards

7.SP.8.c

Design and use a simulation to generate frequencies for compound events.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M6 Lesson 8: Probability Simulations
7-8 M6 Lesson 9: Simulations with Random Number Tables

Statistics and Probability Investigate patterns of association in bivariate data.

Alaska Mathematics Standards	
8.SP. $\mathbf{1}$	Aligned Components of Eureka Math ${ }^{2}$
Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	$7-8$ M6 Lesson 19: Patterns in Scatter Plots
8.SP. $\mathbf{2}$	
Explain why straight lines are widely used	
to model relationships between two	
quantitative variables. For scatter plots	
that suggest a linear association,	
informally fit a straight line, and informally	
assess the model fit by judging the	
closeness of the data points to the line.	

Alaska Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

8.SP. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and y-intercept

8.SP. 4

Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects and use relative frequencies to describe possible association between the two variables.

Functions

Define, evaluate, and compare functions.

Alaska Mathematics Standards

Aligned Components of Eureka Math²

8.F. 1

Understand that a function is a rule that assigns to each input (the domain) exactly one output (the range). The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

8.F. 2

Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)

7-8 M6 Lesson 20: Informally Fitting a Line to Data
7-8 M6 Lesson 21: Linear Models

7-8 M6 Topic F: Bivariate Categorical Data

Alaska Mathematics Standards	Aligned Components of Eureka Math²
8.F. 1	7-8 M5 Lesson 1: Motion and Speed
Understand that a function is a rule	7-8 M5 Lesson 2: Definition of a Function
that assigns to each input (the domain)	7-8 M5 Lesson 4: More Examples of Functions
graph of a function is the set of ordered	7-8 M5 Lesson 5: Graphs of Functions and Equations
pairs consisting of an input and the corresponding output.	Supplemental material is necessary to address the terminology of domain and range.
8.5 .2	7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value
Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	7-8 M5 Lesson 8: Comparing Functions

Alaska Mathematics Standards

8.F. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph
is a straight line; give examples
of functions that are not linear.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M5 Lesson 3: Linear Functions and Proportionality
7-8 M5 Lesson 6: Linear Functions and Rate of Change
7-8 M5 Lesson 10: Graphs of Nonlinear Functions

Functions

Use functions to model relationships between quantities.

Alaska Mathematics Standards

8.F. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F. 5

Given a verbal description between two quantities, sketch a graph. Conversely, given a graph, describe a possible real-world example.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M5 Lesson 6: Linear Functions and Rate of Change
7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value
7-8 M5 Lesson 23: Applications of Volume

7-8 M5 Lesson 23: Applications of Volume

[^0]: 7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
 7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
 7-8 M2 Lesson 16: Applying Proportional Reasoning

[^1]: 7-8 M1 Lesson 18: Solving Equations with Squares and Cubes
 7-8 M1 Lesson 19: The Pythagorean Theorem
 7-8 M1 Lesson 20: Using the Pythagorean Theorem
 7-8 M1 Lesson 21: Approximating Values of Roots
 7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes

