Mathematics || Arizona Mathematics Standards Correlation to Eureka Math ${ }^{\text {2® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Quantities

Reason quantitatively and use units to solve problems

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.N-Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays include utilizing real-world context.

A1.N-Q.A.2	Math 1 M1 Lesson 1: A Powerful Trio
Define appropriate quantities for the purpose of descriptive modeling. Include problem-solving opportunities utilizing real-world context.	Math 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 3: Analyzing Paint Splatters Masson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser
A1.N-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities utilizing real-world context.	Math 1 M6 Lesson 9: Solar System Models

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Seeing Structure in Expressions

Interpret the structure of expressions.

Arizona Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

A1.A-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.

This standard is fully addressed by the lessons aligned to its subsections.
A1.A-SSE.A.1a \quad Math 1 M1 Lesson 4: Interpreting Linear Expressions

Interpret parts of an expression, such as terms, factors, and coefficients.

A1.A-SSE.A.1b

Interpret expressions by viewing one or more of their parts as a single entity.

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

Create equations that describe numbers or relationships.

Arizona Mathematics Standards

A1.A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math ${ }^{2}$

```
Math 1 M1 Lesson 5: Printing Presses
Math 1M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
```


Arizona Mathematics Standards

A1.A-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Aligned Components of Eureka Math ${ }^{2}$
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

A1.A-CED.A. 3

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.
n

A1.A-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 12: Solution Sets of Compound Statements
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 15: Applications of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.A-REI.A. 1

Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.A-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

Solve systems of equations.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.A-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A1.A-REI.C. 6

Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables. Include problem solving opportunities utilizing real-world context.

Math 1 M2 Lesson 10: A New Way to Solve Systems

Math 1 M2 Lesson 9: Systems of Linear Equations in Two Variables
Math 1 M2 Lesson 10: A New Way to Solve Systems
Math 1 M2 Lesson 11: The Elimination Method
Math 1 M2 Lesson 12: Applications of Systems of Equations

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Arizona Mathematics Standards

A1.A-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve, which could be a line.

Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Arizona Mathematics Standards

Aligned Components of Eureka Math²

A1.A-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Focus on cases where $f(x)$ and/or $g(x)$ are linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

A1.A-REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane, excluding the boundary in the case of a strict inequality, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
Math 1 M5 Lesson 19: Comparing Growth of Functions

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math²

Interpreting Functions

Understand the concept of a function and use function notation.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

A1.F-IF.A. 2

Evaluate a function for inputs in the domain, and interpret statements that use function notation in terms of a context.

A1.F-IF.A. 3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Math 1 M3 Lesson 2: Interpreting and Using Function Notation

Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Math 1 M3 Topic A: Functions and Their Graphs

Math 1 M5 Topic A: Arithmetic and Geometric Sequences

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

A1.F-IF.B. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Math 1 M3 Lesson 4: The Graph of a Function

Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Arizona Mathematics Standards

A1.F-IF.B. 6

Calculate and interpret the average rate of change of a continuous function (presented symbolically or as a table) on a closed interval. Estimate the rate of change from a graph. Include problem-solving opportunities utilizing real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math²

Math 1 M5 Lesson 17: Average Rate of Change
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 19: Comparing Growth of Functions
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

Analyze functions using different representations.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions

Math 1 M5 Lesson 8: Graphing Exponential Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Arizona Mathematics Standards

A1.F-IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math²

Building Functions

Build a function that models a relationship between two quantities.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-BF.A. 1

Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Math 1 M1 Lesson 2: Looking for Patterns
Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

A2.F-BF.A.1b

Combine function types using arithmetic operations and function composition.

Math 1 M3 Lesson 11: Comparing Functions

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A2.F-BF.A. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Building Functions

Build new functions from existing functions.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Math 1 M3 Topic D: Transformations of Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.
A1.F-LE.A.1a
Prove that linear functions grow by equal
differences over equal intervals, and that
exponential functions grow by equal
factors over equal intervals.

A1.F-LE.A.1b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

A1.F-LE.A.1c

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

Math 1 M5 Lesson 13: Calculating Interest
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations
Math 1 M5 Lesson 23: Modeling an Invasive Species Population
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 M5 Lesson 18: Analyzing Exponential Growth

Math 1 M5 Lesson 20: World Population Prediction

Math 1 M5 Lesson 21: A Closer Look at Populations

Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations

Arizona Mathematics Standards

A1.F-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input/output pairs.

A1.F-LE.A. 3

Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.

Aligned Components of Eureka Math²

Math 1 M5 Lesson 7: Exponential Functions

Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Math 1 M5 Lesson 19: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-LE.B. 5

Interpret the parameters in a linear or exponential function with integer exponents utilizing real-world context.

Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Congruence

Experiment with transformations in the plane.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

G.G-CO.A. 1

Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

G.G-CO.A. 2

Represent and describe transformations in the plane as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not.

G.G-CO.A. 3

Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane

Math 1 M4 Lesson 1: Geometric Transformations

[^0]
Arizona Mathematics Standards

G.G-CO.A. 4

Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

G.G-CO.A. 5

Given a geometric figure and a rotation, reflection, or translation draw the transformed figure. Specify a sequence of transformations that will carry a given figure onto another.

Aligned Components of Eureka Math²

Math 1 M4 Lesson 2: Translations of the Coordinate Plane

Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 15: Designs with Rigid Motions
Math 1 M4 Lesson 16: Congruent Figures

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Congruence

Understand congruence in terms of rigid motions.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

G.G-CO.B. 6

Use geometric definitions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

G.G-CO.B. 7

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

G.G-CO.B. 8

Explain how the criteria for triangle congruence (ASA, AAS, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures

Math 1 M4 Lesson 18: Side-Angle-Side

Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Congruence

Make geometric constructions.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

G.G-CO.D. 12

Make formal geometric constructions with a variety of tools and methods. Constructions include: copying segments; copying angles; bisecting segments; bisecting angles; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Math 1 M4 Lesson 6: Compass and Straightedge Constructions

Math 1 M4 Lesson 7: Constructing Perpendicular Lines
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane
Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
Math 1 M4 Lesson 26: Sierpinski Triangle

Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 24: Squares Inscribed in Circles
Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Expressing Geometric Properties with Equations

Use coordinates to prove geometric theorems algebraically.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

G.G-GPE.B. 4

Use coordinates to algebraically prove or disprove geometric relationships. Relationships include: proving or disproving geometric figures given specific points in the coordinate plane; and proving or disproving if a specific point lies on a given circle.

G.G-GPE.B. 5

Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems, including finding the equation of a line parallel or perpendicular to a given line that passes through a given point.

G.G-GPE.B. 7

Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.

Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 6: Proving the Parallel Criterion
Math 1 M2 Lesson 19: The Distance Formula
Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically

Math 1 M2 Lesson 6: Proving the Parallel Criterion

Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.A.1 Represent real-value data with plots for the purpose of comparing two or more data sets.	Math 1 M1 Lesson 18: Describing the Center of a Distribution Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
A1.S-ID.A.2	Math 1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of	
the data distribution to compare center	
(median, mean) and spread (interquartile	
range, standard deviation) of two or more	
different data sets.	

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math²

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data, including joint, marginal, and conditional relative frequencies. Recognize possible associations and trends in the data.

A1.S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the quantities are related.

A1.S-ID.B.6a

Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Focus on linear models.

Math 1 M6 Topic B: Modeling with Categorical Data

Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
A1.S-ID.B.6b Informally assess the fit of a function by plotting and analyzing residuals.	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals Math 1 M2 Lesson 26: Analyzing Residuals Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters

Math 1 | Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2}$

Interpreting Categorical and Quantitative Data

 Interpret linear models.
Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.C.7 Interpret the slope as a rate of change and the constant term of a linear model in the context of the data.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
A1.S-ID.C.8	
Compute and interpret the correlation coefficient of a linear relationship.	Math 1 M 2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.S-ID.C.9	Math 1 M 2 Lesson 27: Interpreting Correlation Bivariate Quantitative Data
Distinguish between correlation and	
causation.	

[^0]: Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry

