Algebra || Arizona Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

The Real Number System

A1.N-RN.B Use properties of rational and irrational numbers.

Arizona Mathematics Standards

A1.N-RN.B. 3

Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Quantities

A1.N-Q.A Reason quantitatively and use units to solve problems.

Arizona Mathematics Standards

A1.N-Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays, include utilizing real-world context.

A1.N-Q.A. 2

Define appropriate quantities for the purpose of descriptive modeling. Include problem-solving opportunities utilizing real-world context.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.N-Q.A. 3

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities utilizing real-world context.

A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

A1.A-SSE.A Interpret the structure of expressions.

Arizona Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

A1.A-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.

A1.A-SSE.A.1a

Interpret parts of an expression, such as terms, factors, and coefficients.

A1.A-SSE.A.1b

Interpret expressions by viewing one or more of their parts as a single entity.

A1.A-SSE.A. 2

Use structure to identify ways to rewrite numerical and polynomial expressions. Focus on polynomial multiplication and factoring patterns.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1 M1 Lesson 1: The Growing Pattern of Ducks
A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
A1 M1 Lesson 3: Polynomial Expressions
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

Arizona Mathematics Standards

A1.A-SSE.A. 2 continued

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M4 Topic B: Factoring
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations
```


Seeing Structure in Expressions

A1.A-SSE.B Write expressions in equivalent forms to solve problems.

Arizona Mathematics Standards Aligned Components of Eureka Math²

A1.A-SSE.B. 3
 This standard is fully addressed by the lessons aligned to its subsections.

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions expression to reveal the maximum or minimum value of the function it defines.

Arithmetic with Polynomials and Rational Expressions

A1.A-APR.A Perform arithmetic operations on polynomials.

Arizona Mathematics Standards

A1.A-APR.A. 1

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Aligned Components of Eureka Math ${ }^{2}$
A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Arithmetic with Polynomials and Rational Expressions

A1.A-APR.B Understand the relationship between zeros and factors of polynomials.

Arizona Mathematics Standards

A1.A-APR.B. 3

Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Focus on quadratic and cubic polynomials in which linear and quadratic factors are available.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
Supplementary material is necessary to address identifying zeros of cubic polynomials.

Creating Equations

A1.A-CED.A Create equations that describe numbers or relationships.

Arizona Mathematics Standards

A1.A-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems. Include problem-solving opportunities utilizing real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

A1.A-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

Arizona Mathematics Standards

A1.A-CED.A. 3

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

A1.A-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Aligned Components of Eureka Math ${ }^{2}$

A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M6 Lesson 5: Solar System Models

A1 M1 Lesson 12: Rearranging Formulas
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

A1.A-REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Arizona Mathematics Standards

A1.A-REI.A. 1

Explain each step in solving linear and quadratic equations as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

A1.A-REI.B Solve equations and inequalities in one variable.

Arizona Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

A1.A-REI.B.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1.A-REI.B.4	A1 M1 Lesson 16: Solving Absolute Value Equations
Solve quadratic equations in one variable.	This standard is fully addressed by the lessons aligned to its subsections.
A1.A-REI.B.4a	
Use the method of completing the	
square to transform any quadratic	
equation in x into an equation of the form	
$(x-k)^{2}=q$ that has the same solutions.	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
Derive the quadratic formula from	
this form.	

Arizona Mathematics Standards

A1.A-REI.B.4b

Solve quadratic equations by inspection (e.g., $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Focus on solutions for quadratic equations that have real roots. Include cases that recognize when a quadratic equation has no real solutions.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

A1.A-REI.C Solve systems of equations.

Arizona Mathematics Standards

A1.A-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Arizona Mathematics Standards

A1.A-REI.C. 6

Solve systems of linear equations exactly and approximately, focusing on pairs of linear equations in two variables. Include problem solving opportunities utilizing real-world context.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 7: Low-Flow Showerhead
A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
A1 M2 Lesson 9: A New Way to Solve Systems
A1 M2 Lesson 10: The Elimination Method
A1 M2 Lesson 11: Applications of Systems of Equations

Reasoning with Equations and Inequalities

A1.A-REI.D Represent and solve equations and inequalities graphically.

Arizona Mathematics Standards

A1.A-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve, which could be a line.

A1.A-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately (e.g., using technology to graph the functions, make tables of values, or find successive approximations). Focus on cases where $f(x)$ and/or $g(x)$ are linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math ${ }^{2}$
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

A1 M3 Lesson 10: Using Graphs to Solve Equations
A1 M3 Lesson 15: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 20: Comparing Growth of Functions

Arizona Mathematics Standards

A1.A-REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane, excluding the boundary in the case of a strict inequality, and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 5: Solar System Models

Interpreting Functions

A1.F-IF.A Understand the concept of a function and use function notation.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.F-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

A1.F-IF.A. 2

Evaluate a function for inputs in the domain, and interpret statements that use function notation in terms of a context.

A1 M3 Topic A: Functions and Their Graphs

[^0]
Arizona Mathematics Standards

A1.F-IF.A. 2 continued

A1.F-IF.A. 3
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Aligned Components of Eureka Math ${ }^{2}$

A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

A1.F-IF.B Interpret functions that arise in applications in terms of the context.

Arizona Mathematics Standards

A1.F-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Include problem-solving opportunities utilizing real-world context. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums.

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
```


Arizona Mathematics Standards

A1.F-IF.B. 4 continued

Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

A1.F-IF.B. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 16: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

A1.F-IF.C Analyze functions using different representations.

Arizona Mathematics Standards

Aligned Components of Eureka Math²

A1.F-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).
A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
This standard is fully addressed by the lessons aligned to its subsection.

Arizona Mathematics Standards

A1.F-IF.C.8a

Use the process of factoring and completing the square of a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

A1.F-IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions) Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math ${ }^{2}$
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

[^1]
Building Functions

A1.F-BF.A Build a function that models a relationship between two quantities.

Arizona Mathematics Standards

A1.F-BF.A. 1

Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from real-world context. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step).

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M5 Topic A: Arithmetic and Geometric Sequences
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 15: Calculating Interest
A1 M6 Topic B: Developing Models for Contexts

Building Functions

A1.F-BF.B Build new functions from existing functions.

Arizona Mathematics Standards

A1.F-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph. Focus on linear, quadratic, exponential and piecewise-defined functions (limited to absolute value and step)

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear, Quadratic, and Exponential Models

A1.F-LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Arizona Mathematics Standards

A1.F-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Topic A: Modeling Bivariate Quantitative Data
```


Arizona Mathematics Standards

A1.F-LE.A.1a

Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

A1.F-LE.A.1b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

A1.F-LE.A.1c

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

A1.F-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input/output pairs.

Aligned Components of Eureka Math²

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 15: Calculating Interest

A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic B: Developing Models for Contexts

Arizona Mathematics Standards

A1.F-LE.A. 3

Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.

Aligned Components of Eureka Math ${ }^{2}$

Linear, Quadratic, and Exponential Models

A1.F-LE.B Interpret expressions for functions in terms of the situation they model.

Arizona Mathematics Standards

A1.F-LE.B. 5

Interpret the parameters in a linear or exponential function with integer exponents utilizing real-world context.

Aligned Components of Eureka Math ${ }^{2}$
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Categorical and Quantitative Data

A1.S-ID.A Summarize, represent, and interpret data on a single count or measurement variable.

Arizona Mathematics Standards

A1.S-ID.A. 1

Represent real-value data with plots for the purpose of comparing two or more data sets.

Aligned Components of Eureka Math ${ }^{2}$
A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.A. 2

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

A1.S-ID.A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of outliers if present

Interpreting Categorical and Quantitative Data

A1.S-ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Arizona Mathematics Standards

A1.S-ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data, including joint, marginal, and conditional relative frequencies. Recognize possible associations and trends in the data.

Aligned Components of Eureka Math²

A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables
A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables
A1 M2 Lesson 24: Conditional Relative Frequencies and Association

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the quantities are related.

A1.S-ID.B.6a

Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Focus on linear models.

	A
A1.S-ID.B.6b	A
Informally assess the fit of a function by plotting and analyzing residuals.	A

A1.S-ID.B.6b

Informally assess the fit of a function by plotting and analyzing residuals.

A1 M2 Lesson 15: Relationships Between Quantitative Variables
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 19: Analyzing Residuals
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorical and Quantitative Data A1.S-ID.C Interpret linear models.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-ID.C. 7

Interpret the slope as a rate of change and the constant term of a linear model in the context of the data.

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Arizona Mathematics Standards

A1.S-ID.C. 8

Compute and interpret the correlation coefficient of a linear relationship.

A1.S-ID.C. 9

Distinguish between correlation and causation.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Conditional Probability and the Rules of Probability

A1.S-CP.A Understand independence and conditional probability and use them to interpret data.

Arizona Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.S-CP.A. 1

Describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections, or complements of other events.

A1.S-CP.A. 2

Use the Multiplication Rule for independent events to understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.

Supplemental material is necessary to address this standard.

Supplemental material is necessary to address this standard.

[^0]: A1 M3 Lesson 1: The Definition of a Function
 A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
 A1 M3 Lesson 6: Representations of Functions
 A1 M3 Lesson 16: Step Functions
 A1 M5 Lesson 1: Exploring Patterns

[^1]: A1 M3 Lesson 11: Comparing Functions
 A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
 A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

