Mathematics I| Arkansas Academic Standards - Mathematics Correlation to Eureka Math ${ }^{\text {®® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used K -5 mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Quantities

2. Reason quantitatively and use units to solve problems.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSN.Q.A. 1

- Use units as a way to understand problems and to guide the solution of multi-step problems.
- Choose and interpret units consistently in formulas.
- Choose and interpret the scale and the origin in graphs and data displays.

HSN.Q.A. $\mathbf{2}$	Math 1 M1 Lesson 1: A Powerful Trio
Define appropriate quantities for the purpose of descriptive modeling (i.e., use units appropriate to the problem being solved).	Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 3: Analyzing Paint Splatters	
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Math 1 M6 Lesson 9: Solar System Models

Seeing Structure in Expressions

3. Interpret the structure of expressions.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSA.SSE.A. 1

Interpret expressions that represent a quantity in terms of its context:

- Interpret parts of an expression using appropriate vocabulary, such as terms, factors, and coefficients.
- Interpret complicated expressions by viewing one or more of their parts as a single entity.

Creating Equations

9. Create equations that describe numbers or relationships.

Arkansas Academic Standards Mathematics

```
Math 1 M1 Lesson 4: Interpreting Linear Expressions
Math 1M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
```


HSA.CED.A. 1

Create equations and inequalities in one variable and use them to solve problems.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math²

HSA.CED.A. 2

- Create equations in two or more variables to represent relationships between quantities.
- Graph equations, in two variables, on a coordinate plane.

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables

Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M2 Lesson 12: Applications of Systems of Equations
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

HSA.CED.A. 3

- Represent and interpret constraints by equations or inequalities, and by systems of equations and/or inequalities.
- Interpret solutions as viable or nonviable options in a modeling and/or real-world context.

Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 12: Solution Sets of Compound Statements
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 15: Applications of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M1 Lesson 10: Rearranging Formulas

Rearrange literal equations using the properties of equality.

Reasoning with Equations and Inequalities

10. Understand solving equations as a process of reasoning and explain the reasoning.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSA.REI.A. 1

Assuming that equations have a solution, construct a solution and justify the reasoning used.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

11. Solve equations and inequalities in one variable.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math²

HSA.REI.B. 3

Solve linear equations, inequalities and absolute value equations in one variable, including equations with coefficients represented by letters.

```
Math 1 M1 Lesson 5: Printing Presses
Math 1M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
```


Reasoning with Equations and Inequalities

12. Solve systems of equations and inequalities graphically.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSA.REI.C. 5

- Solve systems of equations in two variables using substitution and elimination.
- Understand that the solution to a system of equations will be the same when using substitution and elimination

Math 1 M2 Lesson 9: Systems of Linear Equations in Two Variables
Math 1 M2 Lesson 10: A New Way to Solve Systems
Math 1 M2 Lesson 12: Applications of Systems of Equations

HSA.REI.C. 6
Math 1 M2 Topic B: Systems of Linear Equations in Two Variables
Solve systems of equations algebraically and graphically.

Reasoning with Equations and Inequalities

13 . Solve systems of equations.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math²

HSA.REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSA.REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$.

Find the solutions approximately by:

- using technology to graph the functions
- making tables of values
- finding successive approximations

Include cases (but not limited to) where $f(x)$ and/or $g(x)$ are:

- linear
- polynomial
- absolute value
- exponential

HSA.REI.D. 12

Solve linear inequalities and systems of linear inequalities in two variables by graphing.

Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
Math 1 M5 Lesson 19: Comparing Growth of Functions
Supplemental material is necessary to fully address cases where at least one function is a polynomial function.

Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

14. Understand the concept of a function and use function notation.

Arkansas Academic Standards -

 MathematicsAligned Components of Eureka Math ${ }^{2}$

HSF.IF.A. 1

- Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range.
- Understand that if f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x.
- Understand that the graph of f is the graph of the equation $y=f(x)$.

HSF.IF.A. 2

In terms of a real-world context:

- Use function notation.
- Evaluate functions for inputs in their domains.
- Interpret statements that use function notation.

Math 1 M3 Topic A: Functions and Their Graphs

HSF.IF.A. 3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Math 1 M5 Topic A: Arithmetic and Geometric Sequences

Interpreting Functions

15. Interpret functions that arise in applications in terms of the context.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSF.IF.B. 4

For a function that models a relationship between two quantities:

- Interpret key features of graphs and tables in terms of the quantities.
- Sketch graphs showing key features given a verbal description of the relationship.

HSF.IF.B. 5

- Relate the domain of a function to its graph.
- Relate the domain of a function to the quantitative relationship it describes.

HSF.IF.B. 6

- Calculate and interpret the average rate of change of a function (presented algebraically or as a table) over a specified interval.
- Estimate the rate of change from a graph.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Math 1 M3 Lesson 4: The Graph of a Function
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Math 1 M5 Lesson 17: Average Rate of Change
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 19: Comparing Growth of Functions
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

16. Analyze functions using different representations.

Arkansas Academic Standards Mathematics

HSF.IF.C. 7

Graph functions expressed algebraically and show key features of the graph, with and without technology:

- Graph linear and quadratic functions and, when applicable, show intercepts, maxima, and minima.
- Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
- Graph exponential functions, showing intercepts and end behavior.

Aligned Components of Eureka Math ${ }^{2}$

HSF.IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 8: Graphing Exponential Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Supplemental material is necessary to address graphing quadratic functions, square root functions, cube root functions, and piecewise-defined functions.

Math 1 M3 Lesson 11: Comparing Functions

Math 1 | Arkansas Academic Standards - Mathematics Correlation to Eureka Math ${ }^{2}$

Building Functions

17. Build a function that models a relationship between two quantities.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSF.BF.A. 1

Write a function that describes a relationship between two quantities:

- From a context, determine an explicit expression, a recursive process, or steps for calculation.
ner

Math 1 M1 Lesson 2: Looking for Patterns
Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

HSF.BF.A. 2

- Write arithmetic and geometric sequences both recursively and with an explicit formula, and translate between the two forms.
- Use arithmetic and geometric sequences to model situations.

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Math 1 | Arkansas Academic Standards - Mathematics Correlation to Eureka Math ${ }^{2}$

Building Functions

18. Build new functions from existing functions.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSF.BF.B. 3

- Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x)$, $f(k x)$, and $f(x+k)$ for specific values of k (k, a constant both positive and negative)
- Find the value of k given the graphs of the transformed functions.
- Experiment with multiple transformations and illustrate an explanation of the effects on the graph with or without technology.

Math 1 M3 Topic D: Transformations of Functions

Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Linear, Quadratic, and Exponential Models

19. Construct and compare linear, quadratic, and exponential models and solve problems.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSF.LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions:

- Show that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
- Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
- Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

HSF.LE.A. 2

Construct linear and exponential equations, including arithmetic and geometric sequences:

- given a graph
- a description of a relationship
- two input-output pairs (include reading these from a table)

Math 1 M5 Lesson 13: Calculating Interest

Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations
Math 1 M5 Lesson 23: Modeling an Invasive Species Population
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Arkansas Academic Standards Mathematics

HSF.LE.A. 3

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or any polynomial function.

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M5 Lesson 19: Comparing Growth of Functions

Supplemental material is necessary to address that a quantity increasing exponentially eventually exceeds a quantity increasing quadratically or any polynomial function.

Linear, Quadratic, and Exponential Models

20. Interpret expressions for functions in terms of the situation they model.

Arkansas Academic Standards -
Mathematics

HSF.LE.B. 5

In terms of a context, interpret the parameters (rates of growth or decay, domain and range restrictions where applicable, etc.) in a function.

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Categorical and Quantitative Data

21. Summarize, represent, and interpret data on a single count or measurement variable.

Arkansas Academic Standards -
 Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSS.ID.A. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots).

```
Math 1 M1 Lesson 17: Distributions and Their Shapes
Math 1 M1 Lesson 18: Describing the Center of a Distribution
Math 1 M1 Lesson 19: Using Center to Compare Data Distributions
Math 1M6 Lesson 1: Using Data to Edit Digital Photography
```

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSS.ID.A. 2
Use statistics appropriate to the shape
of the data distribution to compare
center (median, mean) and spread
(interquartile range, standard deviation)
of two or more different data sets.
HSS.ID.A. 3
Interpret differences in shape, center, and
spread in the context of the data sets,
accounting for possible effects of extreme
data points (outliers).

Interpreting Categorical and Quantitative Data

22. Summarize, represent, and interpret data on two categorical and quantitative variables.

Math 1 M1 Topic D: Univariate Data
Math 1 M6 Lesson 1: Using Data to Edit Digital Photography

Math 1 M1 Topic D: Univariate Data

Arkansas Academic Standards Mathematics

HSS.ID.B. 5

- Summarize categorical data for two categories in two-way frequency tables.
- Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies).
- Recognize possible associations and trends in the data.

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M6 Topic B: Modeling with Categorical Data

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSS.ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related:

- Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

Math 1 M2 Topic E: Numerical Data on Two Variables
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

23. Interpret linear models.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSS.ID.C. 7	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data	
HSS.ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
HSS.ID.C. 9 Distinguish between correlation and causation.	Math 1 M 2 Lesson 27: Interpreting Correlation

Math 1 | Arkansas Academic Standards - Mathematics Correlation to Eureka Math ${ }^{2}$

Congruence

1. Investigate transformations in the plane.

HSG.CO.A. 1

Based on the undefined notions of point, line, plane, distance along a line, and distance around a circular arc, define:

- angle
- line segment
- circle
- perpendicular lines
- parallel lines

HSG.CO.A. 2

- Represent transformations in the plane.
- Describe transformations as functions that take points in the plane as inputs and give other points as outputs.
- Compare transformations that preserve distance and angle to those that do not (e.g., translation versus dilation).

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math²

HSG.CO.A. 3	Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	
HSG.CO.A. 4	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 8: Reflections of the Plane
	Math 1 M4 Lesson 9: Rotations of the Plane
	Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
	Math 1 M4 Lesson 11: Translations of the Plane
HSG.CO.A. 5	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure. - Specify a sequence of transformations that will carry a given figure onto another.	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
	Math 1 M4 Lesson 15: Designs with Rigid Motions
	Math 1 M4 Lesson 16: Congruent Figures

Congruence

2. Understand congruence in terms of rigid motions.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSG.CO.B. 6

- Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.
- Given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

HSG.CO.B. 7

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

HSG.CO.B. 8

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Investigate congruence in terms of rigid motion to develop the criteria for triangle congruence (ASA, SAS, AAS, SSS, and HL).

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures

Math 1 M4 Lesson 17: Congruent Triangles

Math 1 M4 Lesson 18: Side-Angle-Side

Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Math 1 | Arkansas Academic Standards - Mathematics Correlation to Eureka Math ${ }^{2}$

Congruence

4. Make geometric constructions.

Arkansas Academic Standards Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

HSG.CO.D.12	Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software).	Math 1 M4 Lesson 7: Constructing Perpendicular Lines Math 1 M4 Lesson 8: Reflections of the Plane Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions Math 1 M4 Lesson 26: Sierpinski Triangle
HSG.CO.D.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Math 1 M4 Lesson 9: Rotations of the Plane Math 1 M4 Lesson 24: Squares Inscribed in Circles

Expressing Geometric Properties with Equations

13. Use coordinates to prove simple geometric theorems algebraically.

Arkansas Academic Standards Mathematics

Aligned Components of Eureka Math ${ }^{2}$

HSG.GPE.B.4	Math 1 M2 Lesson 4: Proving Conditional Statements
Use coordinates to prove simple geometric theorems algebraically.	Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
HSG.GPE.B.5 - Prove the slope criteria for parallel and perpendicular lines. - Use the slope criteria for parallel and perpendicular lines to solve geometric problems.	Math 1 M2 Lesson 6: Proving the Parallel Criterion 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
HSG.GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.	Math 1 M6 Lesson 11: A Vanishing Sea Proving the Perpendicular Criterion

