Grade 2 | Arkansas Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math²

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Number \& Place Value
 Counting
 Students extend the counting sequence.

Arkansas Mathematics Standards

2.NPV. 1

Count within 1,000 forwards and backwards by ones, tens, and hundreds from any given number.

Aligned Components of Eureka Math ${ }^{2}$

2 M1 Lesson 21: Count efficiently within 1,000 by using ones, tens, and hundreds.
2 M1 Lesson 22: Use counting strategies to solve add to with change unknown word problems.
2 M1 Lesson 23: Organize, count, and record a collection of objects.
2 M1 Lesson 24: Count up to 1,000 by using place value units.
2 M1 Lesson 29: Count by \$1, \$10, and \$100.
2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
2 M1 Lesson 37: Organize, count, represent, and compare a collection of objects.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.

Number \& Place Value

Place Value
Students understand the base ten place value system.

Arkansas Mathematics Standards

2.NPV. 2

Identify the value of hundreds, tens, and ones place in a three-digit number.

Aligned Components of Eureka Math²

2 M1 Lesson 24: Count up to 1,000 by using place value units.
2 M1 Lesson 25: Write three-digit numbers in unit form and show the value that each digit represents.
2 M1 Lesson 27: Read, write, and relate base-ten numbers in all forms.
2 M1 Lesson 28: Use place value understanding to count and exchange $\$ 1, \$ 10$, and $\$ 100$ bills.
2 M1 Lesson 30: Determine how many $\$ 10$ bills are equal to $\$ 1,000$.
2 M1 Lesson 31: Count the total value of ones, tens, and hundreds with place value disks.
2 M1 Lesson 32: Exchange 10 ones for 1 ten, 10 tens for 1 hundred, and 10 hundreds for 1 thousand.
2 M1 Lesson 33: Model numbers with more than 9 ones or 9 tens.
2 M1 Lesson 34: Problem solve in situations with more than 9 ones or 9 tens.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

2.NPV. 3

Read, write, and represent whole numbers up to 1,000 using concrete models or drawings, number names, and a variety of expanded forms.

2.NPV. 4

Mentally add 10 or 100 to a given number in the range of 100-900 and mentally subtract 10 or 100 from a given number in the range of 100-900.

2 M1 Lesson 23: Organize, count, and record a collection of objects.
2 M1 Lesson 26: Write base-ten numbers in expanded form.
2 M1 Lesson 27: Read, write, and relate base-ten numbers in all forms.
2 M1 Lesson 31: Count the total value of ones, tens, and hundreds with place value disks.
2 M1 Lesson 38: Compare numbers in different forms.

2 M4 Lesson 1: Organize, count, and represent a collection of objects
2 M4 Lesson 2: Mentally add and subtract multiples of 10 and 100 with unknowns in various positions.
2 M4 Lesson 3: Solve multi-step word problems and reason about equal expressions.

Number \& Place Value

Comparison

Students use place value understanding to compare numbers.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

2.NPV. 5

Compare two three-digit numbers using symbols ($<,=,>$) based on the value of hundreds, tens, and ones in the given numbers.

1 M1 Lesson 2: Organize and represent data to compare two categories.
1 M1 Lesson 3: Sort to represent and compare data with three categories.
1 M1 Lesson 4: Find the total number of data points and compare categories in a picture graph.
1 M1 Lesson 6: Use tally marks to represent and compare data.
1 M4 Lesson 5: Measure and compare lengths.
1 M5 Lesson 7: Use place value reasoning to compare two quantities.
1 M5 Lesson 8: Use place value reasoning to write and compare 2 two-digit numbers.
1 M5 Lesson 9: Compare two quantities and make them equal.

Number \& Place Value

Fraction Foundations

Students build a conceptual understanding of fractions.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

2.NPV. 6

Partition circles and rectangles into two, three, or four equal shares, describing the shares using the words halves, thirds, and fourths (or quarters).

2 M3 Lesson 8: Create composite shapes by using equal parts and name them as halves, thirds, and fourths.

2 M3 Lesson 9: Interpret equal shares in composite shapes as halves, thirds, and fourths.
2 M3 Lesson 10: Partition circles and rectangles into equal parts and describe those parts as halves.
2 M3 Lesson 11: Partition circles and rectangles into equal parts, and describe those parts as halves,
thirds, and fourths.
2 M3 Lesson 12: Describe a whole by the number of equal parts in halves, thirds, and fourths.
2 M3 Lesson 13: Recognize that equal parts of an identical rectangle can be different shapes.

2 M3 Lesson 8: Create composite shapes by using equal parts and name them as halves, thirds, and fourths.

2 M3 Lesson 9: Interpret equal shares in composite shapes as halves, thirds, and fourths.
2 M3 Lesson 10: Partition circles and rectangles into equal parts and describe those parts as halves.
2 M3 Lesson 11: Partition circles and rectangles into equal parts, and describe those parts as halves, thirds, and fourths.

2 M3 Lesson 12: Describe a whole by the number of equal parts in halves, thirds, and fourths.
2 M3 Lesson 13: Recognize that equal parts of an identical rectangle can be different shapes.

Computation \& Algebraic Reasoning
 Operations \& Properties
 Students perform operations using place value understanding and properties of operations.

Arkansas Mathematics Standards Aligned Components of Eureka Math²

2.CAR. 1

Use mental strategies to fluently add and subtract within 20 with mastery by the end of second grade.

2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.

2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers.
2 M4 Lesson 16: Use concrete models to subtract and relate them to written recordings.
2 M4 Lesson 17: Use place value drawings to represent subtraction with one decomposition and relate them to written recordings.

2 M4 Lesson 18: Use place value drawings to represent subtraction with up to two decompositions and relate them to written recordings.

2 M4 Lesson 19: Use place value drawings to represent subtraction from numbers with 0 in the tens and/or ones place and relate to a written recording.

2 M4 Lesson 20: Subtract by using multiple strategies and defend an efficient strategy.

2.CAR. 2

Use computational fluency to add and subtract within 100 using strategies based on place value, properties of operations, or the relationship between addition and subtraction.

2 M2 Lesson 2: Break apart and add like units.
2 M2 Lesson 3: Use compensation to add within 100
2 M2 Lesson 4: Use compensation to add within 200.
2 M2 Lesson 5: Make a ten to add within 100.
2 M2 Lesson 6: Make a ten to add within 200.
2 M2 Lesson 7: Solve word problems by using simplifying strategies for addition.
2 M2 Lesson 8: Use concrete models to compose a ten.
2 M2 Lesson 9: Use place value drawings to compose a ten and relate to written recordings.

Arkansas Mathematics Standards

2.CAR. 2 continued

Aligned Components of Eureka Math ${ }^{2}$

2 M2 Lesson 10: Use concrete models to compose a hundred.
2 M2 Lesson 11: Use math drawings to compose a hundred and relate to written recordings.
2 M2 Lesson 12: Use place value drawings to compose a ten and a hundred with two- and-three-digit addends. Relate to written recordings.

2 M2 Lesson 14: Use addition and subtraction strategies to find an unknown part.
2 M2 Lesson 15: Use compensation to subtract within 100.
2 M2 Lesson 16: Use compensation to subtract within 200.
2 M2 Lesson 17: Take from a ten to subtract within 200.
2 M2 Lesson 18: Take from a hundred to subtract within 200.
2 M2 Lesson 19: Solve word problems with simplifying strategies for subtraction.
2 M2 Lesson 20: Reason about when to unbundle a ten to subtract.
2 M2 Lesson 21: Use concrete models to decompose a ten with two-digit totals.
2 M2 Lesson 22: Use place value drawings to decompose a ten and relate them to written recordings.
2 M2 Lesson 23: Use concrete models and drawings to decompose a hundred.
2 M2 Lesson 24: Use place value drawings to decompose a hundred and relate them to written recordings.
2 M2 Lesson 25: Use place value drawings to subtract with two decompositions.
2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000.
2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

2.CAR. 2 continued

2.CAR. 3

Add up to four two-digit numbers with sums not exceeding 100 using strategies based on place value and properties of operations.

2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 12: Take from a ten or a hundred to subtract.
2 M4 Lesson 13: Use compensation to subtract within 1,000.
2 M4 Lesson 14: Use compensation to keep a constant difference by adding the same amount to both numbers.

2 M4 Lesson 15: Use compensation to keep a constant difference by subtracting the same amounts from both numbers.

2 M4 Lesson 16: Use concrete models to subtract and relate them to written recordings.
2 M4 Lesson 17: Use place value drawings to represent subtraction with one decomposition and relate them to written recordings.

2 M4 Lesson 18: Use place value drawings to represent subtraction with up to two decompositions and relate them to written recordings.

2 M4 Lesson 19: Use place value drawings to represent subtraction from numbers with 0 in the tens and/or ones place and relate to a written recording.

2 M4 Lesson 20: Subtract by using multiple strategies and defend an efficient strategy.
2 M4 Lesson 21: Apply strategies to find sums and differences and relate addition to subtraction.
2 M4 Lesson 24: Organize, count, and represent a collection of objects.

2 M2 Lesson 1: Reason about addition with four addends.
2 M4 Lesson 11: Choose and defend efficient strategies to add up to four two-digit numbers.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

2.CAR. 4

Use a number line to solve addition and subtraction problems within 100.

2 M1 Lesson 15: Use a measuring tape as a number line to add efficiently.
2 M1 Lesson 16: Use a measuring tape as a number line to subtract efficiently.
2 M1 Lesson 17: Represent and solve comparison problems by using measurement contexts.
2 M1 Lesson 18: Solve compare with difference unknown word problems by using measurement contexts.

2 M1 Lesson 19: Solve compare with difference unknown word problems in various contexts.
2 M5 Lesson 12: Identify unknown numbers on a number line by using the interval as a reference point.

2 M6 Lesson 1: Compose equal groups and write repeated addition equations.
2 M6 Lesson 2: Organize, count, and represent a collection of objects.
2 M6 Lesson 3: Use math drawings to represent equal groups and relate them to repeated addition.
2 M6 Lesson 4: Represent equal groups with a tape diagram.
2 M6 Lesson 5: Compose arrays with rows and columns and use a repeated count to find the total.
2 M6 Lesson 6: Decompose arrays into rows and columns and relate them to repeated addition.
2 M6 Lesson 7: Distinguish between rows and columns and use math drawings to represent arrays.
2 M6 Lesson 8: Use square tiles to create arrays with gaps.
2 M6 Lesson 9: Determine the attributes of a square array.
2 M6 Lesson 10: Use math drawings to compose a rectangle.
2 M6 Lesson 11: Decompose an array to find the total efficiently.
2 M6 Lesson 12: Reason about how equal arrays can be composed differently.
2 M6 Lesson 13: Decompose an array and relate it to a number bond.
2 M6 Lesson 17: Solve word problems that involve equal groups and arrays.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

2.CAR. 6

Use concrete models, drawings, or equations to solve addition and subtraction problems within 1,000 .

2 M2 Lesson 2: Break apart and add like units.
2 M2 Lesson 3: Use compensation to add within 100.
2 M2 Lesson 4: Use compensation to add within 200.
2 M2 Lesson 5: Make a ten to add within 100 .
2 M2 Lesson 6: Make a ten to add within 200.
2 M2 Lesson 7: Solve word problems by using simplifying strategies for addition.
2 M2 Lesson 8: Use concrete models to compose a ten.
2 M2 Lesson 9: Use place value drawings to compose a ten and relate to written recordings.
2 M2 Lesson 10: Use concrete models to compose a hundred.
2 M2 Lesson 11: Use math drawings to compose a hundred and relate to written recordings.
2 M2 Lesson 12: Use place value drawings to compose a ten and a hundred with two- and-three-digit addends. Relate to written recordings.

2 M2 Lesson 14: Use addition and subtraction strategies to find an unknown part.
2 M2 Lesson 15: Use compensation to subtract within 100.
2 M2 Lesson 16: Use compensation to subtract within 200.
2 M2 Lesson 17: Take from a ten to subtract within 200.
2 M2 Lesson 18: Take from a hundred to subtract within 200.
2 M2 Lesson 19: Solve word problems with simplifying strategies for subtraction.
2 M2 Lesson 20: Reason about when to unbundle a ten to subtract.
2 M2 Lesson 21: Use concrete models to decompose a ten with two-digit totals.
2 M2 Lesson 22: Use place value drawings to decompose a ten and relate them to written recordings.
2 M2 Lesson 23: Use concrete models and drawings to decompose a hundred.
2 M2 Lesson 24: Use place value drawings to decompose a hundred and relate them to written recordings.
2 M2 Lesson 25: Use place value drawings to subtract with two decompositions.

Arkansas Mathematics Standards

2.CAR. 6 continued

Aligned Components of Eureka Math ${ }^{2}$

2 M4 Lesson 5: Use the associative property to make a benchmark number to add within 1,000.
2 M4 Lesson 6: Use compensation to add within 1,000.
2 M4 Lesson 7: Use concrete models to add and relate them to written recordings.
2 M4 Lesson 8: Use place value drawings to represent addition and relate them to written recordings, part 1.

2 M4 Lesson 9: Use place value drawings to represent addition and relate them to written recordings, part 2.

2 M4 Lesson 10: Choose and defend efficient solution strategies for addition.
2 M4 Lesson 12: Take from a ten or a hundred to subtract.
2 M4 Lesson 13: Use compensation to subtract within 1,000.
2 M4 Lesson 14: Use compensation to keep a constant difference by adding the same amount to both numbers.

2 M4 Lesson 15: Use compensation to keep a constant difference by subtracting the same amounts from both numbers.

2 M4 Lesson 16: Use concrete models to subtract and relate them to written recordings.
2 M4 Lesson 17: Use place value drawings to represent subtraction with one decomposition and relate them to written recordings.

2 M4 Lesson 18: Use place value drawings to represent subtraction with up to two decompositions and relate them to written recordings.

2 M4 Lesson 19: Use place value drawings to represent subtraction from numbers with 0 in the tens and/or ones place and relate to a written recording.

2 M4 Lesson 20: Subtract by using multiple strategies and defend an efficient strategy.
2 M4 Lesson 21: Apply strategies to find sums and differences and relate addition to subtraction.
2 M4 Lesson 24: Organize, count, and represent a collection of objects.

2 | Arkansas Mathematics Standards Correlation to Eureka Math²

Computation \& Algebraic Reasoning

Problem Solving

Students solve real-world problems.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math²

2.CAR. 7

Solve one and two-step real-world problems involving addition and subtraction within 100 in situations of adding to, taking from, putting together, taking apart, and comparing unknowns in all positions.

2 M1 Lesson 22: Use counting strategies to solve add to with change unknown word problems.
2 M2 Lesson 7: Solve word problems by using simplifying strategies for addition.
2 M2 Lesson 13: Represent and solve take from word problems.
2 M2 Lesson 19: Solve word problems with simplifying strategies for subtraction.
2 M2 Lesson 26: Solve add to and take from with start unknown word problems.
2 M4 Lesson 3: Solve multi-step word problems and reason about equal expressions.
2 M4 Lesson 4: Represent and solve compare with bigger unknown word problems.
2 M4 Lesson 22: Solve compare with smaller unknown word problems.
2 M4 Lesson 23: Solve two-step addition and subtraction word problems.
2 M6 Lesson 1: Compose equal groups and write repeated addition equations.
2 M6 Lesson 4: Represent equal groups with a tape diagram.
2 M6 Lesson 17: Solve word problems that involve equal groups and arrays.

Computation \& Algebraic Reasoning
 Algebraic Concepts
 Students develop and apply understanding of foundational algebraic concepts.

Arkansas Mathematics Standards

2.CAR. 8

Determine whether a group of objects up to 20 has an odd or even number of members; write an equation to express an even number as a sum of two equal addends.

Aligned Components of Eureka Math²

2 M6 Lesson 5: Compose arrays with rows and columns and use a repeated count to find the total.
2 M6 Lesson 6: Decompose arrays into rows and columns and relate them to repeated addition.
2 M6 Lesson 7: Distinguish between rows and columns and use math drawings to represent arrays.
2 M6 Lesson 8: Use square tiles to create arrays with gaps.
2 M6 Lesson 9: Determine the attributes of a square array.
2 M6 Lesson 10: Use math drawings to compose a rectangle.
2 M6 Lesson 11: Decompose an array to find the total efficiently.
2 M6 Lesson 12: Reason about how equal arrays can be composed differently.
2 M6 Lesson 13: Decompose an array and relate it to a number bond.
2 M6 Lesson 14: Relate doubles to even numbers and write equations to express the sums.
2 M6 Lesson 15: Pair objects and skip-count to determine whether a number is even or odd.
2 M6 Lesson 16: Use rectangular arrays to investigate combinations of even and odd numbers.
2 M6 Lesson 17: Solve word problems that involve equal groups and arrays.

Geometry \& Measurement

Shapes

Students analyze attributes of shapes to develop generalizations about their properties.

Arkansas Mathematics Standards

2.GM. 1

Identify, describe, and draw two-dimensional shapes.

Aligned Components of Eureka Math²

2 M3 Lesson 1: Determine the defining attributes of a polygon.
2 M3 Lesson 2: Use attributes to identify, build, and describe two-dimensional shapes.
2 M3 Lesson 3: Identify, build, and describe right angles and parallel lines.
2 M3 Lesson 4: Use attributes to identify, classify, and compose different quadrilaterals.
2 M3 Lesson 5: Relate the square to the cube and use attributes to describe a cube.
2 M3 Lesson 6: Recognize that a whole polygon can be decomposed into smaller parts and the parts can be composed to make a whole.

2 M3 Lesson 7: Combine shapes to create a composite shape and create a new shape from composite shapes.

2 M3 Lesson 1: Determine the defining attributes of a polygon.
2 M3 Lesson 2: Use attributes to identify, build, and describe two-dimensional shapes.
2 M3 Lesson 3: Identify, build, and describe right angles and parallel lines.
2 M3 Lesson 4: Use attributes to identify, classify, and compose different quadrilaterals
2 M3 Lesson 5: Relate the square to the cube and use attributes to describe a cube.
2 M3 Lesson 6: Recognize that a whole polygon can be decomposed into smaller parts and the parts can be composed to make a whole.

2 M3 Lesson 7: Combine shapes to create a composite shape and create a new shape from composite shapes.

Geometry \& Measurement

Length \& Width
Students investigate measurement using rulers.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

2.GM. 3

Select appropriate measurement tools to estimate and measure the length of an object to the nearest whole inch or whole centimeters.

2 M1 Lesson 5: Connect measurement to physical units by iterating a centimeter cube.
2 M1 Lesson 6: Make a 10 cm ruler and measure objects.
2 M1 Lesson 7: Measure lengths and relate 10 cm and 1 cm .
2 M1 Lesson 8: Make a meter stick and measure with various tools.
2 M1 Lesson 13: Estimate and measure height to model metric relationships.
2 M5 Lesson 8: Iterate an inch tile to create a unit ruler and measure to the nearest inch.
2 M5 Lesson 9: Use an inch ruler and a yard stick to estimate and measure the length of various objects.

2.GM. 4

Demonstrate how the length of an object does not change, regardless of the units used to measure it, by measuring the length of an object twice; use two different length units, describing how the two measurements relate to the size of the chosen unit.

2.GM. 5

Measure to determine how much longer or shorter one object is than another, expressing the length difference in terms of a standard length whole unit.

2 M5 Lesson 10: Measure an object twice by using different length units and compare and relate measurement to unit size.

[^0]
Arkansas Mathematics Standards

2.GM. 6

Solve real-world problems involving lengths of the same units, using addition and subtraction within 100.

Aligned Components of Eureka Math ${ }^{2}$

2 M1 Lesson 17: Represent and solve comparison problems by using measurement contexts.
2 M1 Lesson 18: Solve compare with difference unknown word problems by using measurement contexts.

2 M1 Lesson 19: Solve compare with difference unknown word problems in various contexts.
2 M5 Lesson 13: Solve word problems that involve measurements and reason about estimates.
2 M5 Lesson 14: Solve addition and subtraction two-step word problems that involve length.

Geometry \& Measurement

Perimeter, Area, \& Volume
Students explore the perimeter and area of shapes.

Arkansas Mathematics Standards Aligned Components of Eureka Math²

2.GM. 7

Solve real-world and mathematical problems to find the perimeter of polygons.

3 M6 Lesson 13: Decompose quadrilaterals to understand perimeter as the boundary of a shape.
3 M6 Lesson 14: Measure side lengths in whole-number units to determine the perimeters of polygons.
3 M6 Lesson 15: Recognize perimeter as an attribute of shapes and solve problems with unknown measurements.

3 M6 Lesson 16: Solve problems to determine the perimeters of rectangles with the same area.
3 M6 Lesson 17: Solve problems to determine the areas of rectangles with the same perimeter.
3 M6 Lesson 18: Solve real-world problems involving perimeter and unknown measurements by using all four operations.

3 M6 Lesson 19: Measure the perimeter of various circles to the nearest quarter inch by using string.

2 M6 Lesson 11: Decompose an array to find the total efficiently.
2 M6 Lesson 12: Reason about how equal arrays can be composed differently.
2 M6 Lesson 13: Decompose an array and relate it to a number bond.
and columns of same-size squares, counting the total number of squares to find the area.

Geometry \& Measurement

Time \& Money

Students explore time and money values and concepts.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

2.GM. 9

Using an analog clock, tell and write time to the nearest five minutes using colon notation and indicate a.m. or p.m.

2.GM. 10

Describe relationships of time.

2.GM. 11

Solve real-world problems involving addition and subtraction of time intervals in half hours or hours.

2.GM. 12

Count collections of mixed coins and solve real-world problems involving quarters, dimes, nickels, and pennies within 99\$ and whole dollar amounts.

2 M3 Lesson 14: Distinguish between a.m. and p.m.
2 M3 Lesson 16: Use a clock to tell time to the half hour or quarter hour.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.

2 M3 Lesson 14: Distinguish between a.m. and p.m.
2 M3 Lesson 16: Use a clock to tell time to the half hour or quarter hour.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.

2 M3 Lesson 14: Distinguish between a.m. and p.m.
2 M3 Lesson 16: Use a clock to tell time to the half hour or quarter hour.
2 M3 Lesson 17: Relate the clock to a number line to count by fives.
2 M3 Lesson 18: Tell time to the nearest 5 minutes.

2 M5 Lesson 1: Organize, count, and represent a collection of coins.
2 M5 Lesson 2: Use the fewest number of coins to make a given value.
2 M5 Lesson 3: Solve one- and two-step word problems to find the total value of a group of coins.
2 M5 Lesson 4: Solve one- and two-step word problems to find the total value of a group of bills.
2 M5 Lesson 5: Use different strategies to make 1 dollar or to make change from 1 dollar.
2 M5 Lesson 6: Solve word problems by using different ways to make change from 1 dollar.
2 M5 Lesson 7: Solve word problems by using bills and coins.

Data Analysis

Charts, Graphs, \& Tables

Students organize and analyze data.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

2.DA. 1

Use bar graphs, picture graphs, and line plots to organize and represent data, interpreting data with up to four categories.

2 M1 Lesson 1: Draw and label a picture graph to represent data
2 M1 Lesson 2: Draw and label a bar graph to represent data.
2 M1 Lesson 3: Use information presented in a bar graph to solve put together and take apart problems.

2 M1 Lesson 4: Use information presented in a bar graph to solve compare problems.
2 M5 Lesson 15: Use measurement data to create a line plot.
2 M5 Lesson 16: Create a line plot to represent data and ask and answer questions.

2 M1 Lesson 1: Draw and label a picture graph to represent data.
2 M1 Lesson 2: Draw and label a bar graph to represent data.
2 M1 Lesson 3: Use information presented in a bar graph to solve put together and take apart problems.

2 M1 Lesson 4: Use information presented in a bar graph to solve compare problems.
2 M5 Lesson 15: Use measurement data to create a line plot.
2 M5 Lesson 16: Create a line plot to represent data and ask and answer questions.

[^0]: 2 M1 Lesson 11: Estimate and compare lengths.
 2 M1 Lesson 12: Model and reason about the difference in length.
 2 M1 Lesson 14: Represent and compare students' heights.
 2 M5 Lesson 11: Measure to compare differences in lengths.

