Grade 6 | Arkansas Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Number Concepts \& Computations
 Rational Numbers
 Students use fractions, decimals, integers, and absolute values to represent real-world situations.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

6.NCC. 1	6 M3 Lesson 1: Positive and Negative Numbers
Explain positive and negative integers as being opposite values or directions and the meaning of 0 in a real-world context.	6 M3 Lesson 4: Rational Numbers in Real-World Situations
6.NCC. 2	6 M3 Lesson 3: Rational Numbers
Find and plot rational numbers on horizontal and vertical number lines in real-world and mathematical problems.	6 M3 Lesson 4: Rational Numbers in Real-World Situations
	6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
	6 M3 Lesson 11: Plotting Points in the Coordinate Plane
	6 M3 Lesson 12: Reflections in the Coordinate Plane
	6 M3 Lesson 13: Constructing the Coordinate Plane
	6 M3 Lesson 16: Figures in the Coordinate Plane
	6 M3 Lesson 17: Problem Solving with the Coordinate Plane
6.NCC. 3	6 M3 Lesson 5: Comparing Rational Numbers
Compare rational numbers, using inequalities ($<,>, \leq, \geq, \neq$) and order on a number line.	6 M3 Lesson 6: Ordering Rational Numbers
6.NCC. 4	6 M3 Lesson 7: Absolute Value
Interpret the absolute value of numbers for positive or negative quantities in a real-world context.	

Arkansas Mathematics Standards

6.NCC. 5

Convert between fractions, decimals, and percents in real-world and mathematical problems.

Aligned Components of Eureka Math²

6 M1 Lesson 22: Introduction to Percents
6 M1 Lesson 23: Finding the Percent
6 M1 Lesson 24: Finding a Part
6 M1 Lesson 25: Finding the Whole
6 M1 Lesson 26: Solving Percent Problems

Number Concepts \& Computations

Rational Number Operations

Students extend previous knowledge of operations to decimals and fractions, involving positive rational numbers.

Arkansas Mathematics Standards

6.NCC. 6

Interpret and represent quotients of fractions.

Aligned Components of Eureka Math ${ }^{2}$

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

	6 M2 Lesson 17: Partial Quotients
Divide multi-digit numbers fluently in real-world and mathematical problems.	
6.NCC. 9 Use any standard algorithm to fluently add and subtract multi-digit decimals and fractions in real-world and mathematical problems.	6 M2 Lesson 13: Decimal Addition and Subtraction 6 M2 Lesson 14: Patterns in Multiplying Decimals 6 M2 Lesson 15: Decimal Multiplication 6 M2 Lesson 21: Dividing a Decimal by a Whole Number 6 M2 Lesson 22: Dividing a Decimal by a Decimal Greater Than 1 6 M2 Lesson 23: Dividing a Decimal by a Decimal Less Than 1 6 M2 Lesson 24: Living on Mars
6.NCC. 10 Use any standard algorithm to fluently multiply and divide multi-digit decimals and fractions in real-world and mathematical problems.	6 M2 Lesson 13: Decimal Addition and Subtraction 6 M2 Lesson 14: Patterns in Multiplying Decimals 6 M2 Lesson 15: Decimal Multiplication 6 M2 Lesson 21: Dividing a Decimal by a Whole Number 6 M2 Lesson 22: Dividing a Decimal by a Decimal Greater Than 1 6 M2 Lesson 23: Dividing a Decimal by a Decimal Less Than 1 6 M2 Lesson 24: Living on Mars

Number Concepts \& Computations

Common Factors and Multiples

Students use factors and multiples to solve problems.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

6.NCC. 11	6 M2 Lesson 1: Factors and Multiples
Solve real-world and mathematical problems with the greatest common factor of two whole numbers less than or equal to 100 .	6 M2 Lesson 2: Divisibility 6 M2 Lesson 3: The Greatest Common Factor 6 M2 Lesson 4: The Least Common Multiple 6 M2 Lesson 5: The Euclidean Algorithm 6 M4 Lesson 13: The Distributive Property 6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6.NCC. 12 Solve real-world and mathematical problems with the least common multiple of two whole numbers less than or equal to 12 .	6 M2 Lesson 1: Factors and Multiples 6 M2 Lesson 2: Divisibility 6 M2 Lesson 3: The Greatest Common Factor 6 M2 Lesson 4: The Least Common Multiple 6 M2 Lesson 5: The Euclidean Algorithm 6 M4 Lesson 13: The Distributive Property 6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6.NCC. 13 Use the distributive property and the greatest common factor to rewrite the sum of two whole numbers, 1 through 100.	6 M2 Lesson 1: Factors and Multiples 6 M2 Lesson 2: Divisibility 6 M2 Lesson 3: The Greatest Common Factor 6 M2 Lesson 4: The Least Common Multiple 6 M2 Lesson 5: The Euclidean Algorithm 6 M4 Lesson 13: The Distributive Property 6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

Proportional Relationships

Ratio \& Rates

Students understand ratio concepts and use proportional reasoning to solve problems.

Arkansas Mathematics Standards

6.PR. 1

Use precise ratio language and notation to describe a ratio as a relationship between two quantities.
6.PR. 2
Calculate unit rates to include unit pricing
and constant speed.

6 M1 Lesson 2: Introduction to Ratios
6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 M1 Lesson 5: Equivalent Ratios
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships
6 M1 Lesson 11: Applications of Ratio Reasoning

6 M1 Lesson 16: Speed
6 M1 Lesson 17: Rates
6 M1 Lesson 18: Comparing Rates
6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 13: Surface Area in Real-World Situations

6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.PR.4	6 M1 Lesson 6: Ratio Tables and Double Number Lines
Create various representations	
to compare ratios and find missing	
values to solve real-world and	
mathematical problems.	6 M1 Lesson 7: Graphs of Ratio Relationships
	6 M1 Lesson 8: Addition Patterns in Ratio Relationships
	6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
	6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships
	6 M1 Lesson 11: Applications of Ratio Reasoning
	6 M1 Lesson 12: Multiple Ratio Relationships
	6 M1 Lesson 13: Comparing Ratio Relationships, Part 14: Comparing Ratio Relationships, Part 2

Algebra

Expressions

Students extend their understanding of arithmetic to algebraic expressions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.ALG. 1

Read and write expressions in real-world or mathematical problems in which letters stand for numbers.

6.ALG. 2

Use mathematical terms to identify parts of an expression, including the names of operations, terms, factors, coefficients, variables, and constants.

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division 6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions

6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 17: Equations and Solutions
6 M5 Lesson 1: The Area of a Parallelogram
6 M5 Lesson 3: The Area of a Triangle
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M5 Lesson 16: Applying Volume Formulas

Arkansas Mathematics Standards

6.ALG. 4

Generate equivalent expressions by applying the associative, commutative, distributive, and identity properties.

6.ALG. 5

Identify when two expressions are equivalent by using properties of operations including like terms.

Aligned Components of Eureka Math ${ }^{2}$

6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6 M4 Lesson 15: Combining Like Terms by Using the Distributive Property
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 M5 Lesson 4: Areas of Triangles in Real-World Situations
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
6 M5 Lesson 7: Area of Trapezoids and Other Polygons

6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6 M4 Lesson 15: Combining Like Terms by Using the Distributive Property
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 M5 Lesson 7: Area of Trapezoids and Other Polygons
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 17: Problem Solving with Volume

Algebra

Equations \& Inequalities

Students focus on reasoning about and solving equations and inequalities.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.ALG. 6

Use substitution to determine if a given value in a specified set makes an equation or inequality true.

6 M4 Lesson 17: Equations and Solutions
6 M4 Lesson 18: Inequalities and Solutions
6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 20: Solving Equations with Multiplication and Division

6 M4 Lesson 17: Equations and Solutions
6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 20: Solving Equations with Multiplication and Division
6 M4 Lesson 21: Solving Problems with Equations
6 M5 Lesson 2: The Area of a Right Triangle

6 M4 Lesson 18: Inequalities and Solutions

Write, solve, and graph one-step inequalities in real-world and mathematical problems.

Geometry \& Measurement

Area, Volume, \& Surface Area

Students solve problems involving area, volume, and surface area.

Arkansas Mathematics Standards

6.GM. 1

Find the area of triangles, quadrilaterals, and polygons by composing or decomposing to solve real-world and mathematical problems.

Aligned Components of Eureka Math ${ }^{2}$

6 M5 Lesson 1: The Area of a Parallelogram
6 M5 Lesson 2: The Area of a Right Triangle
6 M5 Lesson 3: The Area of a Triangle
6 M5 Lesson 4: Areas of Triangles in Real-World Situations
6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
6 M5 Lesson 7: Area of Trapezoids and Other Polygons
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations

6 M5 Lesson 15: Exploring Volume
6 M5 Lesson 16: Applying Volume Formulas
6 M5 Lesson 17: Problem Solving with Volume
6 M5 Lesson 18: Volumes of Composite Solids
6 M5 Lesson 19: Volume and Surface Area in Real-World Situations

6 M5 Lesson 9: Properties of Solids
6 M5 Lesson 10: Discovering Nets of Solids
6 M5 Lesson 11: Constructing Nets of Solids
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M5 Lesson 19: Volume and Surface Area in Real-World Situations

Geometry \& Measurement

Coordinate Plane System

Students graph points in all four quadrants.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

6.GM.4	6 M3 Lesson 14: Modeling with the Coordinate Plane		
Find and graph pairs of rational numbers in all four quadrants of the coordinate plane in real-world and mathematical problems.	6 M3 Lesson 15: Distance in the Coordinate Plane	\quad	6 M3 Lesson 16: Figures in the Coordinate Plane
:---			
6 M3 Lesson 17: Problem Solving with the Coordinate Plane			
6.GM.5 Lesson 5: Perimeter and Area in the Coordinate Plane			

Geometry \& Measurement

Conversions

Students apply measurement knowledge to solve real-world problems.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.GM. 7

Convert measurements within and between the metric and customary measurement systems to solve real-world and mathematical problems.

5 M1 Lesson 5: Convert measurements and describe relationships between metric units.
5 M1 Lesson 6: Solve multi-step word problems by using metric measurement conversion.
5 M3 Lesson 5: Convert larger customary measurement units to smaller measurement units.
5 M3 Lesson 6: Convert smaller customary measurement units to larger measurement units.
5 M4 Lesson 26: Solve a real-world problem involving metric measurements.
5 M4 Lesson 27: Convert metric measurements involving decimals.
5 M4 Lesson 28: Convert customary measurements involving decimals.

Statistics \& Probability

Statistical \& Nonstatistical

Students recognize that data collected to answer a statistical question can be analyzed by their distributions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.SP. 1

Identify the difference between statistical and non-statistical questions and write simple statistical questions that allow variable responses.

6 M6 Lesson 1: Posing Statistical Questions
6 M6 Lesson 6: Selecting a Data Display
6 M6 Lesson 17: Developing a Statistical Project

Statistics \& Probability

Measures of Center

Students explore mean, median, and mode.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

6.SP. 2	6 M6 Lesson 7: Using the Mean to Describe the Center
Calculate and interpret any measure of center (mean, median, and mode) of a numerical data set.	6 M6 Lesson 8: The Mean as a Balance Point
	6 M6 Lesson 10: The Mean Absolute Deviation
	6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
	6 M6 Lesson 12: Using the Median to Describe the Center
	6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
	6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M6 Lesson 21: Comparing Measures of Variability
6.SP. 3	6 M6 Lesson 7: Using the Mean to Describe the Center
Determine which measure of center (mean or median) is more appropriate to describe the center of data and justify the choice.	6 M6 Lesson 8: The Mean as a Balance Point
	6 M6 Lesson 10: The Mean Absolute Deviation
	6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
	6 M6 Lesson 12: Using the Median to Describe the Center
	6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
	6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M6 Lesson 21: Comparing Measures of Variability

Arkansas Mathematics Standards

6.SP. 4

Describe how the mean or median is affected by outliers of a numerical data set.

Aligned Components of Eureka Math ${ }^{2}$

6 M6 Lesson 7: Using the Mean to Describe the Center
6 M6 Lesson 8: The Mean as a Balance Point
6 M6 Lesson 10: The Mean Absolute Deviation
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 M6 Lesson 21: Comparing Measures of Variability

Statistics \& Probability

Measures of Variation

Students explore range and interquartile range.

Arkansas Mathematics Standards

6.SP. 5

Calculate and interpret the measure of variation [range and interquartile range (IQR)] of a numerical data set.

Aligned Components of Eureka Math ${ }^{2}$

6 M6 Lesson 7: Using the Mean to Describe the Center
6 M6 Lesson 8: The Mean as a Balance Point
6 M6 Lesson 10: The Mean Absolute Deviation
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 M6 Lesson 21: Comparing Measures of Variability

Arkansas Mathematics Standards

6.SP. 6

Determine which measure of variation (range or interquartile range) is more appropriate to describe the shape; justify the choice.

Aligned Components of Eureka Math²

6 M6 Lesson 7: Using the Mean to Describe the Center
6 M6 Lesson 8: The Mean as a Balance Point
6 M6 Lesson 10: The Mean Absolute Deviation
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 M6 Lesson 21: Comparing Measures of Variability

Statistics \& Probability

Numerical Data

Students summarize and describe distributions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

6.SP. 7

Represent numerical data on a number line, histogram, and box plot.

```
6 M6 Lesson 3: Creating a Dot Plot
6 M6 Lesson 4: Creating a Histogram
6 M6 Lesson 5: Comparing Data Displays
6 M6 Lesson 6: Selecting a Data Display
6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
6 \text { M6 Lesson 15: More Practice with Box Plots}
6 \text { M6 Lesson 16: Interpreting Box Plots}
6 \text { M6 Lesson 19: Comparing Data Distributions}
6M6 Lesson 22: Presenting Statistical Projects
```

Arkansas Mathematics Standards	Aligned Components of Eureka Math²
6.SP. 8 Calculate the relative frequency of an interval of data values when given a histogram.	6 M6 Lesson 3: Creating a Dot Plot 6 M6 Lesson 4: Creating a Histogram 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 6: Selecting a Data Display 6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution 6 M6 Lesson 15: More Practice with Box Plots 6 M6 Lesson 16: Interpreting Box Plots 6 M6 Lesson 19: Comparing Data Distributions 6 M6 Lesson 22: Presenting Statistical Projects
6.SP. 9 Interpret a box plot to answer statistical questions about a data set.	6 M6 Lesson 3: Creating a Dot Plot 6 M6 Lesson 4: Creating a Histogram 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 6: Selecting a Data Display 6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution 6 M6 Lesson 15: More Practice with Box Plots 6 M6 Lesson 16: Interpreting Box Plots 6 M6 Lesson 19: Comparing Data Distributions 6 M6 Lesson 22: Presenting Statistical Projects

