

Algebra I | Arkansas Mathematics Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds® teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students' mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of *Eureka Math*²

MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Expressions

Polynomials, Roots, & Exponent Laws Students simplify algebraic and numerical expressions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.EX.1 Add, subtract, and multiply polynomials; compare the system of polynomials to the system of integers when performing operations.	A1 M1 Lesson 3: Polynomial Expressions A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities
A1.EX.2	A1 M5 Lesson 9: Unit Fraction Exponents
Simplify and perform operations with radical expressions without variables; rationalizing denominators should not include conjugates.	A1 M5 Lesson 10: Rational Exponents
A1.EX.3	A1 M5 Lesson 9: Unit Fraction Exponents
Simplify algebraic expressions using the laws of exponents.	A1 M5 Lesson 10: Rational Exponents
A1.EX.4 Interpret the parts of expressions such as terms, factors, and coefficients in terms of a real-world context.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

Functions

Domain & Range, Function Notation

Students understand the concept of a function, domain and range, and use function notation; students use function notation to solve problems.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.FN.1	A1 M3 Lesson 1: The Definition of a Function		
Explain that a function assigns each element in the domain to exactly one element in the range.	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions		
	A1 M3 Lesson 3: The Graph of a Function		
element in the runge.	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$		
	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations		
	A1 M3 Lesson 6: Representations of Functions		
A1.FN.2	A1 M3 Lesson 1: The Definition of a Function		
Use function notation to represent	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions		
functions, understanding that if f is a function and x is an element of its domain, then $f(x)$ represents the output of f corresponding to the input x .	A1 M3 Lesson 6: Representations of Functions		
	A1 M3 Lesson 16: Step Functions		
	A1 M5 Lesson 1: Exploring Patterns		
	A1 M5 Lesson 2: The Recursive Challenge		
	A1 M5 Lesson 3: Recursive Formulas for Sequences		
	A1 M5 Lesson 4: Explicit Formulas for Sequences		
	A1 M5 Lesson 7: Sierpinski Triangle		

Aligned Components of Eureka Math²

A1.FN.3

Graph functions given in function notation, understanding that the graph contains the points (x, f(x)).

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions

A1 M3 Lesson 3: The Graph of a Function

A1 M3 Lesson 4: The Graph of the Equation y = f(x)

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph

A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph

A1 M3 Lesson 9: Representing Functions from Verbal Descriptions

A1 M3 Lesson 11: Comparing Functions

A1 M3 Lesson 12: Mars Curiosity Rover

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 2: Projectile Motion

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 25: Maximizing Area

Aligned Components of Eureka Math²

A1.FN.4

Evaluate functions expressed in function notation for one or more elements in their domains (inputs); use function notation to describe a contextual situation.

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 16: Step Functions

A1 M5 Lesson 1: Exploring Patterns

A1 M5 Lesson 2: The Recursive Challenge

A1 M5 Lesson 3: Recursive Formulas for Sequences

A1 M5 Lesson 4: Explicit Formulas for Sequences

A1 M5 Lesson 7: Sierpinski Triangle

Functions

Construct & Compare

Students construct and compare linear, quadratic, and exponential models and solve problems.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.FN.5

Differentiate between real-world scenarios that can be modeled by exponential or linear functions by determining whether the relationship has a common difference or a common ratio.

A1 M5 Lesson 15: Calculating Interest

A1 M5 Lesson 18: Modeling Populations

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 21: World Population Prediction

A1 M5 Lesson 22: A Closer Look at Populations

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M6 Lesson 1: Analyzing Paint Splatters

A1 M6 Lesson 2: Using Residual Plots to Select Models for Data

A1 M6 Lesson 3: Populations of US Cities

Aligned Components of Eureka Math²

A1.FN.6

Compare the growth pattern of exponential to linear or quadratic functions using graphs and tables and recognize how exponential growth exceeds other functions.

A1 M5 Lesson 8: Exponential Functions

A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs

A1 M5 Lesson 16: Exponential Growth

A1 M5 Lesson 17: Exponential Decay

A1 M5 Lesson 20: Comparing Growth of Functions

A1 M5 Lesson 21: World Population Prediction

A1 M5 Lesson 22: A Closer Look at Populations

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M6 Lesson 4: The Deal

A1 M6 Lesson 7: World Record Doughnut

Linear Functions, Equations, & Inequalities

Create & Solve

Students create and solve equations that model linear relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE.1	A1 M1 Lesson 7: Printing Presses		
Represent and solve real-world problems,	A1 M1 Lesson 11: Writing and Solving Equations in One Variable		
using linear expressions, equations, and inequalities in one variable.	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable		
mequalities in one variable.	A1 M1 Lesson 14: Solution Sets of Compound Statements		
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities		
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables		
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities		
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable		
	A1 M6 Lesson 5: Solar System Models		
	A1 M6 Lesson 6: Designing a Fundraiser		
A1.LFE.2	A1 M5 Lesson 5: Arithmetic and Geometric Sequences		
Construct linear functions from arithmetic	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences		
sequences with and without context.	A1 M5 Lesson 7: Sierpinski Triangle		
A1.LFE.3	A1 M1 Lesson 12: Rearranging Formulas		
Solve linear formulas for a specified variable.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations		

Aligned Components of Eureka Math²

A1.LFE.4

Solve linear equations, linear inequalities, and absolute value equations in one variable, including those with rational number coefficients, and variables on both sides of the equal or inequality sign; solve them fluently, explaining the process used.

A1 M1 Lesson 7: Printing Presses

A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable

A1 M1 Lesson 9: Solving Linear Equations in One Variable

A1 M1 Lesson 10: Some Potential Dangers When Solving Equations

A1 M1 Lesson 11: Writing and Solving Equations in One Variable

A1 M1 Lesson 13: Solving Linear Inequalities in One Variable

A1 M1 Lesson 15: Solving and Graphing Compound Inequalities

A1 M1 Lesson 16: Solving Absolute Value Equations

A1 M1 Lesson 17: Solving Absolute Value Inequalities

Linear Functions, Equations, & Inequalities

Interpret Key Features

Students interpret key features of equations that model linear relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE.5

Determine the domain and range of linear functions in mathematical problems.

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions

A1 M3 Lesson 3: The Graph of a Function

A1 M3 Lesson 4: The Graph of the Equation y = f(x)

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations

A1 M3 Lesson 6: Representations of Functions

Aligned Components of Eureka Math²

A1.LFE.6

Determine reasonable domain and range values of linear functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 16: Step Functions

A1 M5 Lesson 1: Exploring Patterns

A1 M5 Lesson 2: The Recursive Challenge

A1 M5 Lesson 3: Recursive Formulas for Sequences

A1 M5 Lesson 4: Explicit Formulas for Sequences

A1 M5 Lesson 7: Sierpinski Triangle

A1.LFE.7

Interpret the key features of a linear and absolute value functions that models a relationship between two quantities in a given context.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph

A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph

A1 M3 Lesson 9: Representing Functions from Verbal Descriptions

A1 M3 Lesson 11: Comparing Functions

A1 M3 Lesson 12: Mars Curiosity Rover

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 2: Projectile Motion

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 25: Maximizing Area

Aligned Components of Eureka Math²

A1.LFE.8	
-----------------	--

Flexibly use different representations of a linear function, including graphs, tables, and equations.

A1 M3 Lesson 4: The Graph of the Equation y = f(x)

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations

A1 M3 Lesson 6: Representations of Functions

A1 M4 Lesson 4: Graphs of Quadratic Functions

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 24: Another Look at Systems of Equations

A1.LFE.9

Calculate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in context of real-world and mathematical problems.

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 20: Comparing Growth of Functions

A1 M5 Lesson 24: Modeling an Invasive Species Population

Aligned Components of Eureka Math²

A1.LFE.10

Translate among equivalent forms of equations for linear functions, including standard, point-slope, and slope-intercept forms; recognize that each form reveals key features in a given context.

8 M4 Lesson 12: Solutions to Linear Equations in Two Variables

8 M4 Lesson 13: The Graph of a Linear Equation in Two Variables

8 M4 Lesson 14: Lines with Special Characteristics

8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line

8 M4 Lesson 21: Slope and Parallel Lines

8 M4 Lesson 22: Point-Slope Form of the Equation of a Line

8 M4 Lesson 23: Comparing Equations in Different Forms

8 M4 Lesson 24: The Patterns, the Pops, and the Pastries

8 M4 Lesson 25: Lines, Lines, and More Lines

8 M4 Lesson 26: Linear Equations from Word Problems

8 M4 Lesson 27: Get to Work

Linear Functions, Equations, & Inequalities

Systems of Equations & Inequalities
Students solve systems of equations and inequalities.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE.11

Solve systems of linear equations by substitution, elimination, and graphing with and without a real-world context; understand that the solutions will be the same regardless of the method for solving.

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables

A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

A1 M2 Lesson 7: Low-Flow Showerhead

A1 M2 Lesson 8: Systems of Linear Equations in Two Variables

A1 M2 Lesson 9: A New Way to Solve Systems

A1 M2 Lesson 10: The Elimination Method

A1 M2 Lesson 11: Applications of Systems of Equations

Aligned Components of Eureka Math²

A1.LFE.12 Solve a system of equations consisting of a linear equation and a quadratic equation in two variables graphically with the assistance of technology.	A1 M4 Lesson 24: Another Look at Systems of Equations
A1.LFE.13 Explain why a solution to the equation $f(x) = g(x)$ is the x -coordinate where the y -coordinate of $f(x)$ and $g(x)$ are the same using graphs, tables, or approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential.	A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 24: Another Look at Systems of Equations A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
A1.LFE.14 Solve linear inequalities and systems of linear inequalities in two variables by graphing.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities A1 M6 Lesson 6: Designing a Fundraiser

Linear Functions, Equations, & Inequalities

Graphing & Transformations

Students graph linear functions, equations, and inequalities.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE.15

Write linear equations that model the relationship between two quantities and produce a graph of the equation.

A1 M3 Lesson 4: The Graph of the Equation y = f(x)

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 17: Piecewise Linear Functions in Context

A1 M4 Lesson 4: Graphs of Quadratic Functions

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 24: Another Look at Systems of Equations

A1 M4 Lesson 25: Maximizing Area

A1 M4 Lesson 26: Modeling Data with Quadratic Functions

A1 M4 Lesson 27: Search and Rescue Helicopter

A1 M5 Lesson 1: Exploring Patterns

A1 M5 Lesson 2: The Recursive Challenge

A1 M5 Lesson 3: Recursive Formulas for Sequences

A1 M5 Lesson 4: Explicit Formulas for Sequences

A1 M5 Lesson 5: Arithmetic and Geometric Sequences

A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

A1 M5 Lesson 7: Sierpinski Triangle

A1 M5 Lesson 8: Exponential Functions

A1 M5 Lesson 15: Calculating Interest

A1 M6 Lesson 4: The Deal

A1 M6 Lesson 7: World Record Doughnut

Aligned Components of Eureka Math²

A1.LFE.16

Graph linear functions expressed as an equation and show intercepts of the graph without technology.

A1 M3 Lesson 4: The Graph of the Equation y = f(x)

A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M3 Lesson 14: Piecewise Linear Functions

A1 M3 Lesson 15: The Absolute Value Function

A1 M3 Lesson 16: Step Functions

A1 M3 Lesson 17: Piecewise Linear Functions in Context

A1 M3 Lesson 19: Building New Functions—Translations

A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M4 Lesson 4: Graphs of Quadratic Functions

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 24: Another Look at Systems of Equations

A1.LFE.17

Graph absolute value functions expressed as an equation with and without technology, showing intercepts and end behavior.

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M3 Lesson 14: Piecewise Linear Functions

A1 M3 Lesson 15: The Absolute Value Function

A1 M3 Lesson 16: Step Functions

A1 M3 Lesson 17: Piecewise Linear Functions in Context

A1 M3 Lesson 19: Building New Functions—Translations

A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

Aligned Components of Eureka Math²

Δ1	L	F	F	1	8

Graph and generalize the effect of transformations on linear and absolute value functions.

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions

A1 M3 Lesson 19: Building New Functions—Translations

A1 M3 Lesson 20: Building New Functions-Reflections

A1 M3 Lesson 21: Building New Functions-Vertical Scaling

A1 M3 Lesson 22: Building New Functions—Horizontal Scaling

A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M4 Lesson 20: Art with Transformations

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1.LFE.19

Given the graph of a linear function, explain the effects of the transformation from the parent function, y = x.

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions

A1 M3 Lesson 19: Building New Functions—Translations

A1 M3 Lesson 20: Building New Functions-Reflections

A1 M3 Lesson 21: Building New Functions—Vertical Scaling

A1 M3 Lesson 22: Building New Functions—Horizontal Scaling

A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M4 Lesson 20: Art with Transformations

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear Functions, Equations, & Inequalities

Statistical Relationships

Students explore linear statistical relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE.20	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data	
Write linear functions that provide a reasonable fit to data and use them to make predictions, with and without technology; interpret the slope and	A1 M2 Lesson 17: Modeling Relationships with a Line	
	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data	
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts	
y-intercept in context.	A1 M4 Lesson 26: Modeling Data with Quadratic Functions	
	A1 M4 Lesson 27: Search and Rescue Helicopter	
	A1 M6 Lesson 1: Analyzing Paint Splatters	
	A1 M6 Lesson 2: Using Residual Plots to Select Models for Data	
	A1 M6 Lesson 3: Populations of US Cities	
A1.LFE.21	A1 M2 Lesson 20: Interpreting Correlation	
Calculate, using technology, the correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data	
A1.LFE.22	A1 M2 Lesson 20: Interpreting Correlation	
Compare and contrast correlation and causation in real-world problems.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data	

Quadratic Functions & Equations

Create & Solve

Students create and solve equations that model quadratic relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

Represent and solve real-world problems using quadratic expressions and equations in one variable. A1 N A1 N	11 Lesson 7: Printing Presses 11 Lesson 11: Writing and Solving Equations in One Variable 11 Lesson 13: Solving Linear Inequalities in One Variable 11 Lesson 15: Solving and Graphing Compound Inequalities 14 Lesson 9: Creating and Solving Quadratic Equations in One Variable
Write quadratic equations with real number solutions that model the relationship between two quantities and produce a graph of the equation. A1 N A1	It Lesson 11: Writing and Solving Equations in One Variable It Lesson 14: Solution Sets of Compound Statements It Lesson 15: Solving and Graphing Compound Inequalities It Lesson 1: Solution Sets of Linear Equations in Two Variables It Lesson 2: Graphing Linear Equations in Two Variables It Lesson 3: Creating Linear Equations in Two Variables It Lesson 6: Applications of Linear Equations and Inequalities It Lesson 11: Graphing Quadratic Functions from Factored Form It Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form It Lesson 23: Creating Equations of Quadratic Functions to Model Contexts It Lesson 25: Maximizing Area It Lesson 26: Modeling Data with Quadratic Functions It Lesson 27: Search and Rescue Helicopter It Lesson 5: Solar System Models

Aligned Components of Eureka Math²

A1.QFE.3	This standard is fully addressed by the lessons aligned to its subsections.		
Solve quadratic equations with real number solutions, containing one variable, including those with variables on both sides of the equal sign. Equations should be solved by:			
A1.QFE.3.1	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$		
Graphing,	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations		
	A1 M3 Lesson 6: Representations of Functions		
	A1 M4 Lesson 4: Graphs of Quadratic Functions		
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form		
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form		
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions		
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts		
	A1 M4 Lesson 24: Another Look at Systems of Equations		
A1.QFE.3.2	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions		
Factoring (including perfect square	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check		
trinomials and difference of squares binomials),	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term		
	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring		
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable		
	A1 M4 Lesson 10: Zeros of Functions		
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form		
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations		
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square		

Aligned Components of Eureka Math²

A1.QFE.3.2 continued	A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function	
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions	
A1.QFE.3.3 Using the quadratic formula,	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula	
A1.QFE.3.4	A1 M4 Lesson 10: Zeros of Functions	
Completing the square, or	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form	
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square	
	A1 M4 Lesson 15: Deriving the Quadratic Formula	
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions	
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions	
A1.QFE.3.5	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions	
Taking the square root.	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check	
	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term	
	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring	
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable	
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations	
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square	
	A1 M4 Lesson 15: Deriving the Quadratic Formula	
	A1 M4 Lesson 16: Solving Quadratic Equations	
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function	

Quadratic Functions & Equations

Interpret Key Features

Students interpret key features of equations that model quadratic relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 16: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

Aligned Components of Eureka Math²

A1.QFE.6 continued	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area
A1.QFE.7 Flexibly use different representations of a quadratic function, including graphs, tables, and equations.	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$ A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions A1 M3 Lesson 11: Comparing Functions A1 M4 Lesson 4: Graphs of Quadratic Functions A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 24: Another Look at Systems of Equations
A1.QFE.8 Explain how each form of a quadratic expression (standard, factored, and vertex form) identifies different key attributes, using the different forms to interpret quantities in context.	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 9: Representing Functions from Verbal Descriptions A1 M3 Lesson 11: Comparing Functions A1 M3 Lesson 12: Mars Curiosity Rover

Aligned Components of Eureka Math²

A1.QFE.8 continued	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	A1 M4 Lesson 1: Falling Objects
	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 10: Zeros of Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
A1.QFE.9	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Use factoring and completing the square	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
to create equivalent forms of quadratic	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
functions to reveal key attributes.	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
	A1 M4 Lesson 10: Zeros of Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	1

Quadratic Functions & Equations

Graphing & Transformations

Students graph quadratic functions and explore different transformations of $f(x) = x^2$.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.QFE.10	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph quadratic functions given as an	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
equation or in function notation, labeling	A1 M3 Lesson 6: Representations of Functions
key attributes, without technology.	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 24: Another Look at Systems of Equations
A1.QFE.11	A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions
Graph and describe the effect	A1 M3 Lesson 19: Building New Functions—Translations
of transformations on quadratic functions.	A1 M3 Lesson 20: Building New Functions—Reflections
unctions.	A1 M3 Lesson 21: Building New Functions—Vertical Scaling
	A1 M3 Lesson 22: Building New Functions—Horizontal Scaling
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
	A1 M4 Lesson 20: Art with Transformations
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Aligned Components of Eureka Math²

A1.QFE.12

Given the graph of a quadratic function, explain the effects of the transformation from the parent function, $y = x^2$.

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions

A1 M3 Lesson 19: Building New Functions—Translations

A1 M3 Lesson 20: Building New Functions-Reflections

A1 M3 Lesson 21: Building New Functions-Vertical Scaling

A1 M3 Lesson 22: Building New Functions—Horizontal Scaling

A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M4 Lesson 20: Art with Transformations

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Quadratic Functions & Equations

Statistical Relationships

Students explore quadratic statistical relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.QFE.13

Write quadratic functions that provide a reasonable fit to data and use them to make predictions with technology. A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data

A1 M2 Lesson 17: Modeling Relationships with a Line

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 26: Modeling Data with Quadratic Functions

A1 M4 Lesson 27: Search and Rescue Helicopter

A1 M6 Lesson 1: Analyzing Paint Splatters

A1 M6 Lesson 2: Using Residual Plots to Select Models for Data

A1 M6 Lesson 3: Populations of US Cities

Exponential Functions & Equations

Create & Solve

Students create and solve problems that model exponential relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.EFE.1 Represent and solve real-world problems, using exponential equations in one variable.	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1.EFE.2 Represent real-world problems (growth, decay, and compound interest), using exponential equations.	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 14: Solution Sets of Compound Statements A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M2 Lesson 15: Solving and Graphing Compound Inequalities A1 M2 Lesson 15: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables A1 M2 Lesson 3: Creating Linear Equations in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter

Aligned Components of Eureka Math²

A1.EFE.2 continued	A1 M5 Lesson 15: Calculating Interest
	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Lesson 5: Solar System Models
	A1 M6 Lesson 6: Designing a Fundraiser
A1.EFE.3	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Construct exponential equations	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
from geometric sequences with and without context.	A1 M5 Lesson 7: Sierpinski Triangle
without context.	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Lesson 4: The Deal
	A1 M6 Lesson 7: World Record Doughnut

Exponential Functions & Equations

Interpret Key Features

Students interpret key features of equations that model exponential relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.EFE.4 Determine the domain and range of exponential functions in mathematical problems.	A1 M3 Lesson 1: The Definition of a Function A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions A1 M3 Lesson 3: The Graph of a Function A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$ A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions
A1.EFE.5 Determine reasonable domain and range values of exponential functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.	A1 M3 Lesson 1: The Definition of a Function A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions A1 M3 Lesson 6: Representations of Functions A1 M3 Lesson 16: Step Functions A1 M5 Lesson 1: Exploring Patterns A1 M5 Lesson 2: The Recursive Challenge A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 7: Sierpinski Triangle
A1.EFE.6 Interpret the key features of an exponential function that models a relationship between two quantities in a given context.	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 9: Representing Functions from Verbal Descriptions A1 M3 Lesson 11: Comparing Functions A1 M3 Lesson 12: Mars Curiosity Rover A1 M3 Lesson 13: Modeling Elevation as a Function of Time

Aligned Components of Eureka Math²

A1.EFE.6 continued	A1 M4 Lesson 1: Falling Objects
	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
A1.EFE.7	A1 M3 Lesson 11: Comparing Functions
Flexibly use different representations	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
of an exponential function, including graphs, tables, and equations.	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 18: Modeling Populations
A1.EFE.8	A1 M5 Lesson 11: Graphing Exponential Functions
Interpret the quantities in an exponential	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
equation in the context of a real-world problem, including growth, decay, and compound interest.	A1 M5 Lesson 18: Modeling Populations

Exponential Functions & Equations

Graphing

Students graph exponential functions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.EFE.9

Graph exponential functions that model real-world problems (growth, decay, and compound interest), showing key attributes.

A1 M5 Lesson 11: Graphing Exponential Functions

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Exponential Functions & Equations

Statistical Relationships

Students explore exponential statistical relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.EFE.10

Write exponential functions that provide a reasonable fit to data and use them to make predictions with technology. A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data

A1 M2 Lesson 17: Modeling Relationships with a Line

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 26: Modeling Data with Quadratic Functions

A1 M4 Lesson 27: Search and Rescue Helicopter

A1 M6 Lesson 1: Analyzing Paint Splatters

A1 M6 Lesson 2: Using Residual Plots to Select Models for Data

A1 M6 Lesson 3: Populations of US Cities

Statistics & Probability

Numerical Data

Students summarize and describe distributions.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.SP.1	A1 M1 Lesson 18: Distributions and Their Shapes
Use box plots and histograms to determine the statistics appropriate to the shape of the data distribution; compare the center and spread of two or more data sets.	A1 M1 Lesson 19: Describing the Center of a Distribution
	A1 M1 Lesson 20: Using Center to Compare Data Distributions
	A1 M1 Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation
	A1 M1 Lesson 22: Estimating Variability in Data Distributions
	A1 M1 Lesson 23: Comparing Distributions of Univariate Data
A1.SP.2	A1 M1 Lesson 18: Distributions and Their Shapes
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.	A1 M1 Lesson 19: Describing the Center of a Distribution
	A1 M1 Lesson 20: Using Center to Compare Data Distributions
	A1 M1 Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation
	A1 M1 Lesson 22: Estimating Variability in Data Distributions
	A1 M1 Lesson 23: Comparing Distributions of Univariate Data

Statistics & Probability

Bivariate Data

A1.SP.3

associations.

Students will investigate patterns of association in bivariate data.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

Summarize data from two categorical
variables in a frequency table; interpret
relative frequencies in the context of the
data, recognizing data trends and

A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables

A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables

A1 M2 Lesson 24: Conditional Relative Frequencies and Association