Algebra | | Arkansas Mathematics Standards Correlation to Eureka Math ${ }^{\text {® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Expressions

Polynomials, Roots, \& Exponent Laws
Students simplify algebraic and numerical expressions.

Arkansas Mathematics Standards Aligned Components of Eureka Math²

A1.EX.1 Add, subtract, and multiply polynomials; compare the system of polynomials to the system of integers when performing operations. A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions	A1 Lesson 5: Multiplying Polynomial Expressions		
A1.EX.2 Simplify and perform operations with radical expressions without variables; rationalizing denominators should not include conjugates.	A1 M5 Lesson 10: Rational Exponents		
A1.EX. 3 Simplify algebraic expressions using the laws of exponents.	A1 M5 Lesson 10: Rational Exponents Lesson 9: Unit Fraction Exponents		A1.EX.4
:---			
Interpret the parts of expressions such			
as terms, factors, and coefficients			
in terms of a real-world context.			

Functions

Domain \& Range, Function Notation
Students understand the concept of a function, domain and range, and use function notation; students use function notation to solve problems.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

A1.FN. 1

Explain that a function assigns each element in the domain to exactly one element in the range.

A1.FN. 2

Use function notation to represent functions, understanding that if f is a function and x is an element of its domain, then $f(x)$ represents the output of f corresponding to the input x.

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Arkansas Mathematics Standards

A1.FN. 3

Graph functions given in function notation, understanding that the graph contains the points $(x, f(x))$.

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation y =f(x)
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
```


Arkansas Mathematics Standards

A1.FN. 4

Evaluate functions expressed in function notation for one or more elements in their domains (inputs); use function notation to describe a contextual situation.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Functions

Construct \& Compare

Students construct and compare linear, quadratic, and exponential models and solve problems.

Arkansas Mathematics Standards

A1.FN. 5

Differentiate between real-world scenarios that can be modeled by exponential or linear functions by determining whether the relationship has a common difference or a common ratio.

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Lesson 1: Analyzing Paint Splatters
A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
A1 M6 Lesson 3: Populations of US Cities
```


Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.FN. 6

Compare the growth pattern of exponential to linear or quadratic functions using graphs and tables and recognize how exponential growth exceeds other functions.

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

Linear Functions, Equations, \& Inequalities
 Create \& Solve
 Students create and solve equations that model linear relationships.

Arkansas Mathematics Standards Aligned Components of Eureka Math ${ }^{2}$

A1.LFE.	A1 M1 Lesson 7: Printing Presses
Represent and solve real-world problems, using linear expressions, equations, and inequalities in one variable.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 14: Solution Sets of Compound Statements
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities	
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable	
A1.LFE.2	A1 M6 Lesson 5: Solar System Models
Construct linear functions from arithmetic	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
sequences with and without context.	A1 M5 Lesson 7: Sierpinski Triangle a Fundraiser
A1.LFE. 3	A1 M1 Lesson 12: Rearranging Formulas
Solve linear formulas for	
a specified variable.	

Arkansas Mathematics Standards

A1.LFE. 4

Solve linear equations, linear inequalities, and absolute value equations in one variable, including those with rational number coefficients, and variables on both sides of the equal or inequality sign; solve them fluently, explaining the process used.

Aligned Components of Eureka Math²

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M1 Lesson 16: Solving Absolute Value Equations
A1 M1 Lesson 17: Solving Absolute Value Inequalities

Linear Functions, Equations, \& Inequalities

Interpret Key Features

Students interpret key features of equations that model linear relationships.

Arkansas Mathematics Standards

A1.LFE. 5

Determine the domain and range of linear functions in mathematical problems.

Aligned Components of Eureka Math ${ }^{2}$

```
A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation y =f(x)
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
```


Arkansas Mathematics Standards

A1.LFE. 6

Determine reasonable domain and range values of linear functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.

A1.LFE. 7

Interpret the key features of a linear and absolute value functions that models a relationship between two quantities in a given context.

Aligned Components of Eureka Math²

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.LFE. 8

Flexibly use different representations of a linear function, including graphs, tables, and equations.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations

A1.LFE. 9

Calculate and interpret the rate of change of a linear function represented in a table, graph, or as an equation in context of real-world and mathematical problems.

A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 24: Modeling an Invasive Species Population

Arkansas Mathematics Standards

A1.LFE. 10

Translate among equivalent forms of equations for linear functions, including standard, point-slope, and slope-intercept forms; recognize that each form reveals key features in a given context.

Aligned Components of Eureka Math ${ }^{2}$

8 M4 Lesson 12: Solutions to Linear Equations in Two Variables
8 M4 Lesson 13: The Graph of a Linear Equation in Two Variables
8 M4 Lesson 14: Lines with Special Characteristics
8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line
8 M4 Lesson 21: Slope and Parallel Lines
8 M4 Lesson 22: Point-Slope Form of the Equation of a Line
8 M4 Lesson 23: Comparing Equations in Different Forms
8 M4 Lesson 24: The Patterns, the Pops, and the Pastries
8 M4 Lesson 25: Lines, Lines, and More Lines
8 M4 Lesson 26: Linear Equations from Word Problems
8 M4 Lesson 27: Get to Work

Linear Functions, Equations, \& Inequalities
Systems of Equations \& Inequalities
Students solve systems of equations and inequalities.

Arkansas Mathematics Standards

A1.LFE. 11

Solve systems of linear equations by substitution, elimination, and graphing with and without a real-world context; understand that the solutions will be the same regardless of the method for solving.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 7: Low-Flow Showerhead
A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
A1 M2 Lesson 9: A New Way to Solve Systems
A1 M2 Lesson 10: The Elimination Method
A1 M2 Lesson 11: Applications of Systems of Equations

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LFE. 12

Solve a system of equations consisting of a linear equation and a quadratic equation in two variables graphically with the assistance of technology.

A1.LFE. 13

Explain why a solution to the equation $f(x)=g(x)$ is the x-coordinate where the y-coordinate of $f(x)$ and $g(x)$ are the same using graphs, tables, or approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, quadratic, absolute value, and exponential.

A1.LFE. 14

Solve linear inequalities and systems of linear inequalities in two variables by graphing.

A1 M4 Lesson 24: Another Look at Systems of Equations

A1 M3 Lesson 10: Using Graphs to Solve Equations
A1 M3 Lesson 15: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 6: Designing a Fundraiser

Linear Functions, Equations, \& Inequalities

Graphing \& Transformations

Students graph linear functions, equations, and inequalities.

Arkansas Mathematics Standards

A1.LFE. 15

Write linear equations that model the relationship between two quantities and produce a graph of the equation.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1 M5 Lesson 7: Sierpinski Triangle
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 15: Calculating Interest
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

Arkansas Mathematics Standards

A1.LFE. 16

Graph linear functions expressed as an equation and show intercepts of the graph without technology.

Aligned Components of Eureka Math²

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 14: Piecewise Linear Functions
A1 M3 Lesson 15: The Absolute Value Function
A1 M3 Lesson 16: Step Functions
A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations

A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 14: Piecewise Linear Functions
A1 M3 Lesson 15: The Absolute Value Function
A1 M3 Lesson 16: Step Functions
A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LFE. 18

Graph and generalize the effect of transformations on linear and absolute value functions.

A1.LFE. 19

Given the graph of a linear function, explain the effects of the transformation from the parent function, $y=x$.

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 20: Building New Functions-Reflections
A1 M3 Lesson 21: Building New Functions-Vertical Scaling
A1 M3 Lesson 22: Building New Functions-Horizontal Scaling
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 20: Building New Functions-Reflections
A1 M3 Lesson 21: Building New Functions-Vertical Scaling
A1 M3 Lesson 22: Building New Functions-Horizontal Scaling
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear Functions, Equations, \& Inequalities
 Statistical Relationships
 Students explore linear statistical relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LFE. 20

Write linear functions that provide a reasonable fit to data and use them to make predictions, with and without technology; interpret the slope and y-intercept in context.

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Lesson 1: Analyzing Paint Splatters
A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
A1 M6 Lesson 3: Populations of US Cities

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 20: Interpreting Correlation
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Compare and contrast correlation and causation in real-world problems.

Quadratic Functions \& Equations

Create \& Solve

Students create and solve equations that model quadratic relationships.
Arkansas Mathematics Standards
Aligned Components of Eureka Math²

A1.QFE. 1

Represent and solve real-world problems using quadratic expressions and equations in one variable.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1.QFE. 2

Write quadratic equations with real number solutions that model the relationship between two quantities and produce a graph of the equation.

A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Lesson 5: Solar System Models
A1 M6 Lesson 6: Designing a Fundraiser

Arkansas Mathematics Standards

Aligned Components of Eureka Math²

A1.QFE. 3

Solve quadratic equations with real number solutions, containing one variable, including those with variables on both sides of the equal sign. Equations should be solved by:

A1.QFE.3.1

Graphing,

This standard is fully addressed by the lessons aligned to its subsections.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.QFE.3.2 continued	A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1.QFE.3.3 Using the quadratic formula,	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula
A1.QFE.3.4 Completing the square, or	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1.QFE.3.5 Taking the square root.	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Quadratic Functions \& Equations
 Interpret Key Features
 Students interpret key features of equations that model quadratic relationships.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

A1.QFE. 4

Determine the domain and range of quadratic functions in mathematical problems.

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 3: The Graph of a Function

A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 16: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

Arkansas Mathematics Standards

A1.QFE. 6 continued

A1.QFE. 7

Flexibly use different representations of a quadratic function, including graphs, tables, and equations.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations

A1.QFE. 8

Explain how each form of a quadratic expression (standard, factored, and vertex form) identifies different key attributes, using the different forms to interpret quantities in context.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover

Arkansas Mathematics Standards

A1.QFE. 8 continued

A1.QFE. 9

Use factoring and completing the square to create equivalent forms of quadratic functions to reveal key attributes.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term

A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Quadratic Functions \& Equations

Graphing \& Transformations

Students graph quadratic functions and explore different transformations of $f(x)=x^{2}$.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.QFE. 10

Graph quadratic functions given as an equation or in function notation, labeling key attributes, without technology.

A1.QFE. 11

Graph and describe the effect of transformations on quadratic functions.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 20: Building New Functions-Reflections
A1 M3 Lesson 21: Building New Functions-Vertical Scaling
A1 M3 Lesson 22: Building New Functions-Horizontal Scaling
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Arkansas Mathematics Standards

A1.QFE. 12

Given the graph of a quadratic function, explain the effects of the transformation from the parent function, $y=x^{2}$.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Lesson 18: Exploring Transformations of the Graphs of Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 20: Building New Functions-Reflections
A1 M3 Lesson 21: Building New Functions-Vertical Scaling
A1 M3 Lesson 22: Building New Functions-Horizontal Scaling
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Quadratic Functions \& Equations

Statistical Relationships

Students explore quadratic statistical relationships.

Arkansas Mathematics Standards

A1.QFE. 13

Write quadratic functions that provide a reasonable fit to data and use them to make predictions with technology.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Lesson 1: Analyzing Paint Splatters
A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
A1 M6 Lesson 3: Populations of US Cities

Exponential Functions \& Equations

Create \& Solve

Students create and solve problems that model exponential relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math²
A1.EFE. 1
Represent and solve real-world
problems, using exponential equations
in one variable.
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1.EFE. 2

Represent real-world problems (growth, decay, and compound interest), using exponential equations.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.EFE. 2 continued

A1.EFE. 3

Construct exponential equations from geometric sequences with and without context.
A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Lesson 5: Solar System Models
A1 M6 Lesson 6: Designing a Fundraiser
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1 M5 Lesson 7: Sierpinski Triangle
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut
A1

Exponential Functions \& Equations

Interpret Key Features
Students interpret key features of equations that model exponential relationships.

Arkansas Mathematics Standards

A1.EFE. 4

Determine the domain and range of exponential functions in mathematical problems.

A1.EFE. 5

Determine reasonable domain and range values of exponential functions representing real-world situations, both continuous and discrete; interpret the solution as reasonable or unreasonable in context.

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

A1.EFE. 6

Interpret the key features of an exponential function that models a relationship between two quantities in a given context.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.EFE. 6 continued	A1 M4 Lesson 1: Falling Objects
	A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion	
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions	
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts	
A1.EFE.7	A1 M4 Lesson 25: Maximizing Area
Flexibly use different representations of an exponential function, including graphs, tables, and equations.	A1 M3 Lesson 11: Comparing Functions Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 Lesson 21: Completing the Square to Graph Quadratic Functions	
A1 M5 Lesson 11: Graphing Exponential Functions	
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)	
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)	

Exponential Functions \& Equations

Graphing

Students graph exponential functions.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

A1.EFE. 9

Graph exponential functions that model real-world problems (growth, decay, and compound interest), showing key attributes.

```
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
```


Exponential Functions \& Equations

Statistical Relationships

Students explore exponential statistical relationships.

Arkansas Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.EFE. 10

Write exponential functions that provide a reasonable fit to data and use them to make predictions with technology.

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Lesson 1: Analyzing Paint Splatters
A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
A1 M6 Lesson 3: Populations of US Cities

Statistics \& Probability

Numerical Data

Students summarize and describe distributions.

Arkansas Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

A1.SP. 1

Use box plots and histograms to determine the statistics appropriate to the shape of the data distribution; compare the center and spread of two or more data sets.

A1.SP. 2

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points.

A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions
A1 M1 Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation
A1 M1 Lesson 22: Estimating Variability in Data Distributions
A1 M1 Lesson 23: Comparing Distributions of Univariate Data

A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions
A1 M1 Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation
A1 M1 Lesson 22: Estimating Variability in Data Distributions
A1 M1 Lesson 23: Comparing Distributions of Univariate Data

Statistics \& Probability

Bivariate Data

Students will investigate patterns of association in bivariate data.

Arkansas Mathematics Standards

A1.SP. 3

Summarize data from two categorical variables in a frequency table; interpret relative frequencies in the context of the data, recognizing data trends and associations.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables
A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables
A1 M2 Lesson 24: Conditional Relative Frequencies and Association

