Algebra | | California Common Core Math Standards Correlation to Eureka Math ${ }^{2 ®}$ California Edition

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$ California Edition, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ California Edition carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ California Edition employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ California Edition incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² California Edition teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math² California Edition add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

The Real Number System

Extend the properties of exponents to rational exponents.

California Common Core State Standards
 Aligned Components

N.RN.A. 1
Explain how the definition of the
meaning of rational exponents follows
from extending the properties of integer
exponents to those values, allowing
for a notation for radicals in terms
of rational exponents.

N.RN.A. 2

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

The Real Number System

Use properties of rational and irrational numbers.

California Common Core
 State Standards

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

N.RN.B. 3
 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Quantities

Reason quantitatively and use units to solve problems.

California Common Core State Standards
 Aligned Components

N.Q.A.1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
N.Q.A. 2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
N.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

Interpret the structure of expressions.

California Common Core
 State Standards

Aligned Components

A.SSE.A. 1	Supplemental material is necessary to address this standard.
Interpret expressions that represent	
a quantity in terms of its context.	

California Common Core State Standards

Aligned Components

A.SSE.A.1.a

Interpret parts of an expression, such as terms, factors, and coefficients.

A.SSE.A.1.b

Interpret complicated expressions by viewing one or more of their parts as a single entity.
(

A.SSE.A. 2

Use the structure of an expression to identify ways to rewrite it.

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M1 Lesson 1: The Growing Pattern of Ducks
A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
A1 M1 Lesson 3: Polynomial Expressions
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Topic B: Factoring
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems.

California Common Core State Standards

Aligned Components

A.SSE.B. 3
 Supplemental material is necessary to address this standard.

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

A.SSE.B.3.a

Factor a quadratic expression to reveal the zeros of the function it defines.
A.SSE.B.3.b

Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

A.SSE.B.3.C

Use the properties of exponents to transform expressions for exponential functions.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Arithmetic with Polynomials and Rational Expressions
 Perform arithmetic operations on polynomials.

California Common Core
 State Standards
 Aligned Components

A.APR.A. 1

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

```
A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities
```


Creating Equations

Create equations that describe numbers or relationships.

California Common Core
State Standards

Aligned Components

A.CED.A. 1

Create equations and inequalities in one variable including ones with absolute value and use them to solve problems.

```
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
```


California Common Core State Standards

Aligned Components

A.CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

A.CED.A. 3

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

A.CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M6 Lesson 5: Solar System Models

A1 M1 Lesson 12: Rearranging Formulas
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

California Common Core State Standards

Aligned Components

A.REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

California Common Core State Standards

Aligned Components

A.REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

```
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Topic C: Compound Statements Involving Equations and Inequalities in One Variable
```


California Common Core State Standards

Aligned Components

A.REI.B.3.1

Solve one-variable equations and inequalities involving absolute value, graphing the solutions and interpreting them in context.

A.REI.B. 4

Solve quadratic equations in one variable.

A.REI.B.4.a

Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from this form.

A.REI.B.4.b

Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

A1 M1 Topic C: Compound Statements Involving Equations and Inequalities in One Variable

Supplemental material is necessary to address this standard.

A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions

A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

Solve systems of equations.

California Common Core State Standards

Aligned Components

A.REI.C.5	A1 M2 Lesson 9: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
A.REI.C. 6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly	
and approximately (e.g., with graphs),	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
focusing on pairs of linear equations	
in two variables.	A1 M2 Lesson 9: A New Way to Solve Systems
A.REI.C. 7 Solve Elimination Method of a linear equation and a quadratic equation in two variables algebraically and graphically.	A1 M4 Lesson 24: Another Look at Systems of Equations

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

California Common Core State Standards

Aligned Components

A.REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

A.REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

A.REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

A1 M3 Lesson 11: Using Graphs to Solve Equations
A1 M3 Lesson 16: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 20: Comparing Growth of Functions

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 5: Solar System Models

Interpreting Functions

Understand the concept of a function and use function notation.

California Common Core State Standards

Aligned Components

F.IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 17: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

California Common Core State Standards

Aligned Components

F.IF.A. 3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

California Common Core State Standards

Aligned Components

F.IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
A1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 10: Representing Functions from Verbal Descriptions
A1 M3 Lesson 12: Comparing Functions
A1 M3 Lesson 13: Mars Curiosity Rover
A1 M3 Lesson 14: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

A1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 10: Representing Functions from Verbal Descriptions
A1 M3 Lesson 12: Comparing Functions
A1 M3 Lesson 13: Mars Curiosity Rover
A1 M3 Lesson 14: Modeling Elevation as a Function of Time
Lesson 1. Falling Objects
Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

California Common Core State Standards

Aligned Components

F.IF.B. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

F.IF.B. 6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 14: Modeling Elevation as a Function of Time
A1 M3 Lesson 17: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

Analyze functions using different representations.

California Common Core State Standards

Aligned Components

F.IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

Supplemental material is necessary to address this standard.

California Common Core
 State Standards

Aligned Components

F.IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 20: Building New Functions-Translations
A1 M3 Lesson 24: A Summary of Transforming the Graph of a Function

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Supplemental material is necessary to address this standard.

F.IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

California Common Core
 State Standards

Aligned Components

F.IF.C.8.a

Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

F.IF.C.8.b

Use the properties of exponents to interpret expressions for exponential functions.

F.IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Building Functions

 \section*{\title{Build a function that models a relationship between two quantities.
}}
 \section*{\title{
Build a function that models a relationship between two quantities.
}}

California Common Core
 State Standards

F.BF.A. 1

Write a function that describes a relationship between two quantities.

A1 M4 Lesson 10: Zeros of Functions

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

A1 M3 Lesson 12: Comparing Functions
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Aligned Components

A1 M6 Lesson 5: Solar System Models

California Common Core State Standards

Aligned Components

Building Functions

Build new functions from existing functions.

California Common Core State Standards
 Aligned Components

F.BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

F.BF.B. 4

Find inverse functions.

F.BF.B.4.a

Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse.

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

A1 M3 Lesson 7: Inverses of Linear Functions

A1 M3 Lesson 7: Inverses of Linear Functions

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

California Common Core

State Standards

Aligned Components

F.LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

F.LE.A.1.a
Prove that linear functions grow by equal
differences over equal intervals, and that
exponential functions grow by equal
factors over equal intervals.

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 15: Calculating Interest

A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

California Common Core State Standards

Aligned Components

F.LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

F.LE.A. 3

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic B: Developing Models for Contexts

A1 M5 Lesson 20: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

California Common Core
 State Standards

Aligned Components

F.LE.B. 5

Interpret the parameters in a linear or exponential function in terms of a context.

[^0]
California Common Core State Standards

Aligned Components

F.LE.B. 6

Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity.

A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

California Common Core State Standards

Aligned Components

S.ID.A. 1

Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.A. 2

Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

A1 M1 Lesson 19: Distributions and Their Shapes
A1 M1 Lesson 20: Describing the Center of a Distribution
A1 M1 Lesson 21: Using Center to Compare Data Distributions

A1 M1 Topic D: Univariate Data

California Common Core State Standards

Aligned Components

S.ID.A. 3

Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

A1 M1 Topic D: Univariate Data

\square

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

California Common Core State Standards

Aligned Components

S.ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S.ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

California Common Core State Standards

Aligned Components

S.ID.B.6.a	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	A1 M2 Lesson 17: Modeling Relationships with a Line
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions	
A1 M4 Lesson 27: Search and Rescue Helicopter	
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
S.ID.B.6.b Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M6 Topic A: Modeling Bivariate Quantitative Data	
S.ID.B.6.c Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 20: Interpreting Correlation	

A1 | California Common Core Math Standards Correlation to Eureka Math ${ }^{2}$ California Edition

Interpreting Categorical and Quantitative Data

 Interpret linear models.
California Common Core State Standards
 Aligned Components

S.ID.C.7	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data	
S.ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S.ID.C.9 Distinguish between correlation and causation.	A1 M2 Lesson 20: Interpreting Correlation

[^0]: A1 M5 Lesson 18: Modeling Populations
 A1 M5 Lesson 19: Analyzing Exponential Growth
 A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
 A1 M5 Lesson 24: Modeling an Invasive Species Population

