EUREKA MATH².

Algebra I | Colorado Academic Standards—Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Number and Quantity

HS.N-RN.A The Real Number System: Extend the properties of exponents to rational exponents.

Colorado Academic Standards— Mathematics Aligned Components of *Eureka Math*²

HS.N-RN.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	A1 M5 Lesson 10: Rational Exponents
HS.N-RN.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

Number and Quantity

HS.N-RN.B The Real Number System: Use properties of rational and irrational numbers.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.N-RN.B.3	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	A1 M4 Lesson 17: Rewriting Square Roots

Number and Quantity

HS.N-Q.A Quantities: Reason quantitatively and use units to solve problems.

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²

HS.N-Q.A.1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
HS.N-Q.A.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
HS.N-Q.A.3	A1 M6 Lesson 5: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	

Algebra and Functions

HS.A-SSE.A Seeing Structure in Expressions: Interpret the structure of expressions.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A-SSE.A.1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²
HS.A-SSE.A.1.a	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
Interpret parts of an expression, such as terms, factors, and coefficients.	
HS.A-SSE.A.1.b	A1 M5 Lesson 8: Exponential Functions
Interpret complicated expressions by	A1 M5 Lesson 16: Exponential Growth
viewing one or more of their parts as a single entity.	A1 M5 Lesson 17: Exponential Decay
a single entity.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
HS.A-SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Use the structure of an expression to	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
identify ways to rewrite it.	A1 M1 Lesson 3: Polynomial Expressions
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Topic B: Factoring
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations

HS.A-SSE.B Seeing Structure in Expressions: Write expressions in equivalent forms to solve problems.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A-SSE.B.3	This standard is fully addressed by the lessons aligned to its subsections.
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
HS.A-SSE.B.3.a	A1 M4 Lesson 10: Zeros of Functions
Factor a quadratic expression to reveal	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
the zeros of the function it defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HS.A-SSE.B.3.b	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HS.A-SSE.B.3.c	A1 M5 Lesson 11: Graphing Exponential Functions
Use the properties of exponents to transform expressions for exponential functions.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations

HS.A-APR.A Arithmetic with Polynomials & Rational Expressions: Perform arithmetic operations on polynomials.

Colorado Academic Standards-Mathematics

Aligned Components of Eureka Math²

HS.A-APR.A.1	A1 M1 Lesson 3: Polynomial Expressions
Explain that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Algebra and Functions

HS.A-CED.A Creating Equations: Create equations that describe numbers or relationships.

Colorado Academic Standards— Mathematics

Aligned Components of Eureka Math²

HS.A-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	A1 M1 Lesson 7: Printing Presses A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
HS.A-CED.A.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create equations in two or more	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
variables to represent relationships	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
between quantities and graph equations	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
on coordinate axes with labels and scales.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A-CED.A.2 continued	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
HS.A-CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations or	A1 M1 Lesson 14: Solution Sets of Compound Statements
inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models
HS.A-CED.A.4	A1 M1 Lesson 12: Rearranging Formulas
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

@ 2023 Great Minds PBC | greatminds.org

HS.A-REI.A Reasoning with Equations & Inequalities: Understand solving equations as a process of reasoning and explain the reasoning.

Colorado Academic Standards-Mathematics

Aligned Components of Eureka Math²

HS.A-REI.A.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Explain each step in solving a simple	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
equation as following from the equality of numbers asserted at the previous	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
step, starting from the assumption that	
the original equation has a solution.	
Construct a viable argument to justify	
a solution method.	

Algebra and Functions

HS.A-REI.B Reasoning with Equations & Inequalities: Solve equations and inequalities in one variable.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A-REI.B.3	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M1 Lesson 16: Solving Absolute Value Equations
	A1 M1 Lesson 17: Solving Absolute Value Inequalities

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A-REI.B.4	This standard is fully addressed by the lessons aligned to its subsections.
Solve quadratic equations in one variable.	
HS.A-REI.B.4.a	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	A1 M4 Lesson 15: Deriving the Quadratic Formula
HS.A-REI.B.4.b	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Solve quadratic equations (e.g., for	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
$x^2 = 49$) by inspection, taking square	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
roots, completing the square, the quadratic formula and factoring,	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
as appropriate to the initial form of the	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
	Supplemental material is necessary to address complex solutions.

Colorado Academic Standards—

HS.A-REI.C Reasoning with Equations & Inequalities: Solve systems of equations.

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²

HS.A-REI.C.5	A1 M2 Lesson 9: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
HS.A-REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
HS.A-REI.C.7	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

HS.A-REI.D Reasoning with Equations & Inequalities: Represent and solve equations and inequalities graphically.

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²
HS.A-REI.D.10 Explain that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
HS.A-REI.D.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 24: Another Look at Systems of Equations A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
HS.A-REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities A1 M6 Lesson 5: Solar System Models

HS.F-IF.A Interpreting Functions: Understand the concept of a function and use function notation.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-IF.A.1	A1 M3 Topic A: Functions and Their Graphs
Explain that a function is a correspondence from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	
HS.F-IF.A.2	A1 M3 Lesson 1: The Definition of a Function
Use function notation, evaluate functions	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret statements that use function notation in terms of a context.	A1 M3 Lesson 6: Representations of Functions
	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle

Mathematics	
HS.F-IF.A.3	A1 M5 Lesson 1: Exploring Patterns
Demonstrate that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Colorado Academic Standards— Mathematics

Aligned Components of Eureka Math²

Algebra and Functions HS.F-IF.B Interpreting Functions: Interpret functions that arise in applications in terms of the context.

Colorado Academic Standards— Mathematics

Aligned Components of Eureka Math²

HS.F-IF.B.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
HS.F-IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	 A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 9: Representing Functions from Verbal Descriptions A1 M3 Lesson 11: Comparing Functions A1 M3 Lesson 12: Mars Curiosity Rover A1 M3 Lesson 13: Modeling Elevation as a Function of Time A1 M4 Lesson 1: Falling Objects A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²
HS.F-IF.B.4 continued	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area
HS.F-IF.B.5	A1 M3 Lesson 3: The Graph of a Function
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 13: Modeling Elevation as a Function of Time A1 M3 Lesson 16: Step Functions A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
HS.F-IF.B.6	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average rate of change presented symbolically or as a table, of a function over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 20: Comparing Growth of Functions A1 M5 Lesson 24: Modeling an Invasive Species Population

$\ensuremath{\textcircled{\sc 0}}$ 2023 Great Minds PBC | greatminds.org

HS.F-IF.C Interpreting Functions: Analyze functions using different representations.

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²
HS.F-IF.C.7	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
HS.F-IF.C.7.a	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
show intercepts, maxima, and minima.	A1 M3 Lesson 6: Representations of Functions
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
HS.F-IF.C.7.b	A1 M3 Topic C: Piecewise-Defined Linear Functions
Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	A1 M3 Lesson 19: Building New Functions—Translations
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
	Supplemental material is necessary to address graphing cube root functions.

HS.F-IF.C Interpreting Functions: Analyze functions using different representations.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-IF.C.7.e	A1 M5 Lesson 11: Graphing Exponential Functions
Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Supplemental material is necessary to address graphing logarithmic and trigonometric functions.
HS.F-IF.C.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	This standard is fully addressed by the lessons aligned to its subsections.
HS.F-IF.C.8.a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HS.F-IF.C.8.b Use the properties of exponents to interpret expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-IF.C.9	A1 M3 Lesson 11: Comparing Functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Colorado Academic Standards—

HS.F-BF.A Building Functions: Build a function that models a relationship between two quantities.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-BF.A.1	A1 M6 Lesson 5: Solar System Models
Write a function that describes a relationship between two quantities.	
HS.F-BF.A.1.a	A1 M3 Lesson 17: Piecewise Linear Functions in Context
Determine an explicit expression, a recursive process, or steps for calculation from a context.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Topic A: Arithmetic and Geometric Sequences
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 15: Calculating Interest
	A1 M6 Topic B: Developing Models for Contexts

Mathematics	
HS.F-BF.A.1.b Combine standard function types using arithmetic operations.	A1 M6 Lesson 4: The Deal A1 M6 Lesson 6: Designing a Fundraiser A1 M6 Lesson 7: World Record Doughnut
HS.F-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	A1 M5 Lesson 5: Arithmetic and Geometric Sequences A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences A1 M5 Lesson 7: Sierpinski Triangle

Colorado Academic Standards-Mathematics

Aligned Components of Eureka Math²

Algebra and Functions

HS.F-BF.B Building Functions: Build new functions from existing functions.

Colorado Academic Standards— Mathematics	Aligned Components of Eureka Math ²
HS.F-BF.B.3	A1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k both positive and negative; find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 20: Art with Transformations A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

-

HS.F-LE.A Linear, Quadratic & Exponential Models: Construct and compare linear, quadratic, and exponential models and solve problems.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-LE.A.1	A1 M6 Topic A: Modeling Bivariate Quantitative Data
Distinguish between situations that can be modeled with linear functions and with exponential functions.	
HS.F-LE.A.1.a	A1 M5 Lesson 19: Analyzing Exponential Growth
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
HS.F-LE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Identify situations in which one quantity changes at a constant rate per unit interval relative to another.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Colorado Academic Standards

A1 M5 Lesson 24: Modeling an Invasive Species Population HS.F-LE.A.1.c A1 M5 Lesson 15: Calculating Interest Identify situations in which a quantity A1 M5 Lesson 18: Modeling Populations grows or decays by a constant percent A1 M5 Lesson 21: World Population Prediction rate per unit interval relative to another. A1 M5 Lesson 22: A Closer Look at Populations A1 M5 Lesson 24: Modeling an Invasive Species Population

Mathematics	Alighed Components of Eureka Math-
HS.F-LE.A.2	A1 M5 Lesson 8: Exponential Functions
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Topic B: Developing Models for Contexts
HS.F-LE.A.3	A1 M5 Lesson 20: Comparing Growth of Functions
Use graphs and tables to describe that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	

Aligned Components of Eureka Math²

Colorado Academic Standards— Mathematics

Algebra and Functions

HS.F-LE.B Linear, Quadratic, & Exponential Models: Interpret expressions for functions in terms of the situation they model.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.F-LE.B.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or exponential function in terms of a context.	A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time A1 M5 Lesson 24: Modeling an Invasive Species Population

Data, Statistics, and Probability

HS.S-ID.A Interpreting Categorical & Quantitative Data: Summarize, represent, and interpret data on a single count or measurement variable.

Aligned Components of <i>Eureka Math</i> ²
A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions
A1 M1 Topic D: Univariate Data
A1 M1 Topic D: Univariate Data

Colorado Academic Standards—

Data, Statistics, and Probability

HS.S-ID.B Interpreting Categorical & Quantitative Data: Summarize, represent, and interpret data on two categorical and quantitative variables.

Colorado Academic Standards— Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.S-ID.B.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	A1 M2 Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables A1 M2 Lesson 24: Conditional Relative Frequencies and Association
HS.S-ID.B.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
HS.S-ID.B.6.a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M6 Topic A: Modeling Bivariate Quantitative Data
HS.S-ID.B.6.b Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 19: Analyzing Residuals A1 M6 Topic A: Modeling Bivariate Quantitative Data

© 2023 Great Minds PBC | greatminds.org

Mathematics	Alighed Components of Eureka Math
HS.S-ID.B.6.c	A1 M2 Lesson 17: Modeling Relationships with a Line
Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	A1 M2 Lesson 20: Interpreting Correlation
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
HS.S-ID.B.7	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Colorado Academic Standards— Mathematics

Aligned Components of Eureka Math²

Data, Statistics, and Probability

HS.S-ID.C Interpreting Categorical & Quantitative Data: Interpret linear models.

Colorado Academic Standards—
MathematicsAligned Components of Eureka Math2HS.S-ID.C.7A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative DataInterpret the slope (rate of change) and
the intercept (constant term) of a linear
model in the context of the data.A1 M2 Lesson 21: Analyzing Bivariate Quantitative DataHS.S-ID.C.8A1 M2 Lesson 20: Interpreting CorrelationUsing technology, compute and interpret
the correlation coefficient of a linear fit.A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data