EUREKA MATH².

Mathematics I | Connecticut Mathematics Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Quantities

N-Q.A Reason quantitatively and use units to solve problems.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
N-Q.A.1	Math 1 M1 Lesson 1: A Powerful Trio
Use units as a way to understand problems	Math 1 M3 Lesson 14: Comparing Models for Situations
and to guide the solution of multi-step problems; choose and interpret units	Math 1 M6 Lesson 9: Solar System Models
consistently in formulas; choose and	Math 1 M6 Lesson 10: Designing a Fundraiser
interpret the scale and the origin in graphs and data displays.	Math 1 M6 Lesson 11: A Vanishing Sea
N-Q.A.2	Math 1 M1 Lesson 1: A Powerful Trio
Define appropriate quantities for the	Math 1 M3 Lesson 14: Comparing Models for Situations
purpose of descriptive modeling.	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
N-Q.A.3	Math 1 M6 Lesson 9: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Math 1 M6 Lesson 11: A Vanishing Sea

Seeing Structure in Expressions

A-SSE.A Interpret the structure of expressions.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-SSE.A.1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-SSE.A.1.a	Math 1 M1 Lesson 4: Interpreting Linear Expressions
Interpret parts of an expression, such as terms, factors, and coefficients.	
A-SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity.	Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 14: Exponential Growth Math 1 M5 Lesson 15: Exponential Decay Math 1 M5 Lesson 16: Modeling Populations Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

A-CED.A Create equations that describe numbers or relationships.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-CED.A.1	Math 1 M1 Lesson 5: Printing Presses
Create equations and inequalities in one	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
variable and use them to solve problems.	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
	Math 1 M1 Lesson 16: Applying Absolute Value
A-CED.A.2	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create equations in two or more variables	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
	Math 1 M2 Lesson 4: Proving Conditional Statements
	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 8: Low-Flow Showerhead
	Math 1 M2 Lesson 12: Applications of Systems of Equations
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-CED.A.3	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Represent constraints by equations	Math 1 M1 Lesson 12: Solution Sets of Compound Statements
or inequalities, and by systems of equations and/or inequalities, and interpret solutions	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
as viable or non-viable options in a	Math 1 M1 Lesson 16: Applying Absolute Value
modeling context.	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	Math 1 M2 Lesson 15: Applications of Linear Inequalities
	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser
A-CED.A.4	Math 1 M1 Lesson 10: Rearranging Formulas
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	

Reasoning with Equations and Inequalities A-REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-REI.A.1	Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

A-REI.B Solve equations and inequalities in one variable.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
A-REI.B.3	Math 1 M1 Lesson 5: Printing Presses
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
	Math 1 M1 Lesson 14: Solving Absolute Value Equations
	Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

A-REI.C Solve systems of equations.

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
A-REI.C.5	Math 1 M2 Lesson 10: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	

A-REI.C.6

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Reasoning with Equations and Inequalities

A-REI.D Represent and solve equations and inequalities graphically.

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
A-REI.D.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A-REI.D.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	Math 1 M3 Lesson 10: Using Graphs to Solve Equations Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions Math 1 M5 Lesson 19: Comparing Growth of Functions Supplemental material is necessary to address polynomial, rational, and logarithmic functions for this standard.
A-REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

F-IF.A Understand the concept of a function and use function notation.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-IF.A.1	Math 1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	
F-IF.A.2	Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Use function notation, evaluate functions	Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret statements that use function notation	Math 1 M3 Lesson 7: Representations of Functions
in terms of a context.	Math 1 M5 Lesson 1: Exploring Patterns
	Math 1 M5 Lesson 2: The Recursive Challenge
	Math 1 M5 Lesson 3: Recursive Formulas for Sequences
	Math 1 M5 Lesson 4: Explicit Formulas for Sequences
F-IF.A.3	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	

Interpreting Functions

F-IF.B Interpret functions that arise in applications in terms of the context.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-IF.B.4	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
For a function that models a relationship	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
between two quantities, interpret key features of graphs and tables in terms of the	Math 1 M3 Lesson 11: Comparing Functions
quantities, and sketch graphs showing key	Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
features given a verbal description of the	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
relationship.	Math 1 M3 Lesson 15: Mars Curiosity Rover
F-IF.B.5	Math 1 M3 Lesson 4: The Graph of a Function
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
F-IF.B.6	Math 1 M5 Lesson 17: Average Rate of Change
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Math 1 M5 Lesson 18: Analyzing Exponential Growth
	Math 1 M5 Lesson 19: Comparing Growth of Functions
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

F-IF.C Analyze functions using different representations.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-IF.C.7	This standard is addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
F-IF.C.7.a	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and	Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
show intercepts, maxima, and minima.	Math 1 M3 Lesson 7: Representations of Functions
	Supplemental material is necessary to address quadratic functions for this standard.
F-IF.C.7.e	Math 1 M5 Lesson 8: Graphing Exponential Functions
Graph exponential and logarithmic	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	Supplemental material is necessary to address logarithmic and trigonometric functions for this standard.
F-IF.C.9	Math 1 M3 Lesson 11: Comparing Functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	

Building Functions

F-BF.A Build a function that models a relationship between two quantities.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-BF.A.1 Write a function that describes a relationship between two quantities.	Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 9: Solar System Models
F-BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	Math 1 M1 Lesson 2: Looking for Patterns Math 1 M5 Topic A: Arithmetic and Geometric Sequences Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 13: Calculating Interest Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 8: The Deal Math 1 M6 Lesson 9: Solar System Models
F-BF.A.1.b Combine standard function types using arithmetic operations.	Math 1 M6 Lesson 8: The Deal
F-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences Math 1 M6 Lesson 8: The Deal

Building Functions

F-BF.B Build new functions from existing functions.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math²</i>
F-BF.B.3	Math 1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Linear, Quadratic, and Exponential Models

F-LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-LE.A.1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 20: World Population Prediction
	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-LE.A.1.a	Math 1 M5 Lesson 18: Analyzing Exponential Growth
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
F-LE.A.1.b	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations
F-LE.A.1.c	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations
F-LE.A.2	Math 1 M5 Lesson 7: Exponential Functions
Construct linear and exponential functions,	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
including arithmetic and geometric sequences, given a graph, a description	Math 1 M5 Lesson 14: Exponential Growth
of a relationship, or two input-output pairs (include reading these from a table).	Math 1 M5 Lesson 15: Exponential Decay
	Math 1 M5 Topic D: Comparing Linear and Exponential Models
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 8: The Deal
	Math 1 M6 Lesson 9: Solar System Models

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
F-LE.A.3	Math 1 M5 Lesson 19: Comparing Growth of Functions
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	Supplemental material is necessary to address quadratic functions (and more generally, polynomial functions) for this standard.

Linear, Quadratic, and Exponential Models

F-LE.B Interpret expressions for functions in terms of the situation they model.

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
F-LE.B.5	Math 1 M5 Lesson 16: Modeling Populations
Interpret the parameters in a linear or exponential function in terms of a context.	Math 1 M5 Lesson 18: Analyzing Exponential Growth
	Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Congruence

G-CO.A Experiment with transformations in the plane.

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
G-CO.A.1	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
G-CO.A.2	Math 1 M4 Lesson 1: Geometric Transformations
Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	
G-CO.A.3	Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	
G-CO.A.4	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Develop definitions of rotations, reflections,	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
and translations in terms of angles, circles,	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
perpendicular lines, parallel lines, and line segments.	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 8: Reflections of the Plane
	Math 1 M4 Lesson 9: Rotations of the Plane
	Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
	Math 1 M4 Lesson 11: Translations of the Plane

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
G-CO.A.5	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
	Math 1 M4 Lesson 15: Designs with Rigid Motions
	Math 1 M4 Lesson 16: Congruent Figures

Congruence G-CO.B Understand congruence in terms of rigid motions.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
G-CO.B.6	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Math 1 M4 Lesson 16: Congruent Figures
G-CO.B.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	Math 1 M4 Lesson 17: Congruent Triangles

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
G-CO.B.8	Math 1 M4 Lesson 18: Side-Angle-Side
Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side Math 1 M4 Lesson 20: Angle-Side-Angle Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

G-CO.D Make geometric constructions.

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
G-CO.D.12	Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).	Math 1 M4 Lesson 7: Constructing Perpendicular Lines
	Math 1 M4 Lesson 8: Reflections of the Plane
	Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
	Math 1 M4 Lesson 11: Translations of the Plane
	Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
	Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
	Math 1 M4 Lesson 26: Sierpinski Triangle
G-CO.D.13	Math 1 M4 Lesson 9: Rotations of the Plane
Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Math 1 M4 Lesson 24: Squares Inscribed in Circles
	Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Expressing Geometric Properties with Equations

G-GPE.B Use coordinates to prove simple geometric theorems algebraically.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
G-GPE.B.4 Use coordinates to prove simple geometric theorems algebraically. G-GPE.B.5	Math 1 M2 Lesson 4: Proving Conditional Statements Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Math 1 M2 Lesson 6: Proving the Parallel Criterion
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).	Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
G-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

S-ID.A Summarize, represent, and interpret data on a single count or measurement variable.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
S-ID.A.1	Math 1 M1 Lesson 17: Distributions and Their Shapes
Represent data with plots on the real number line (dot plots, histograms, and box plots).	Math 1 M1 Lesson 18: Describing the Center of a Distribution Math 1 M1 Lesson 19: Using Center to Compare Data Distributions
	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography

Connecticut Mathematics Standards	Aligned Components of Eureka Math ²
S-ID.A.2	Math 1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
S-ID.A.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	Math 1 M1 Topic D: Univariate Data

Interpreting Categorical and Quantitative Data

S-ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
\$-ID.B.5	Math 1 M6 Topic B: Modeling with Categorical Data
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	
S-ID.B.6	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
S-ID.B.6.a	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
S-ID.B.6.b	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Informally assess the fit of a function by plotting and analyzing residuals.	Math 1 M2 Lesson 26: Analyzing Residuals
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
S-ID.B.6.c	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Fit a linear function for a scatter plot that suggests a linear association.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

S-ID.C Interpret linear models.

Connecticut Mathematics Standards	Aligned Components of <i>Eureka Math</i> ²
S-ID.C.7	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the	Math 1 M2 Lesson 24: Modeling Relationships with a Line
intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S-ID.C.8	Math 1 M2 Lesson 27: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S-ID.C.9	Math 1 M2 Lesson 27: Interpreting Correlation
Distinguish between correlation and causation.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data