Grade 6 | Florida's B.E.S.T. Standards for Mathematics Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Thinking and Reasoning Standards

Aligned Components of Eureka Math ${ }^{2}$

MA.K12.MTR.1.1

Actively participate in effortful learning both individually and collectively.

MA.K12.MTR.2.1
Demonstrate understanding by representing problems in multiple ways.

MA.K12.MTR.3.1

Complete tasks with mathematical fluency.

MA.K12.MTR.4.1

Engage in discussions that reflect on the mathematical thinking of self and others.

MA.K12.MTR.5.1

Use patterns and structure to help understand and connect mathematical concepts.

MA.K12.MTR.6.1

Assess the reasonableness of solutions.

MA.K12.MTR.7. 1

Apply mathematics to real-world contexts.

Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

MA.K12.MTR.3.1 Complete tasks with mathematical fluency.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.4.1 Engage in discussions that reflect on the mathematical thinking of self and others.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.5.1 Use patterns and structure to help understand and connect mathematical concepts.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.6.1	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.7.1	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

Number Sense and Operations

MA.6.NSO. 1 Extend knowledge of numbers to negative numbers and develop an understanding of absolute value.

Florida's B.E.S.T. Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

MA.6.NSO.1.1

Extend previous understanding of numbers to define rational numbers. Plot, order and compare rational numbers.

6 M3 Lesson 2: Integers
6 M3 Lesson 3: Rational Numbers
6 M3 Lesson 5: Comparing Rational Numbers
6 M3 Lesson 6: Ordering Rational Numbers

6 M3 Lesson 1: Positive and Negative Numbers
6 M3 Lesson 4: Rational Numbers in Real-World Situations
6 M3 Lesson 5: Comparing Rational Numbers
6 M3 Lesson 6: Ordering Rational Numbers

6 M3 Lesson 7: Absolute Value

6 M3 Lesson 8: Absolute Value and Order
6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations

Number Sense and Operations

MA.6.NSO. 2 Add, subtract, multiply and divide positive rational numbers.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.NSO.2.1

Multiply and divide positive multi-digit numbers with decimals to the thousandths, including using a standard algorithm with procedural fluency.

6 M2 Lesson 14: Patterns in Multiplying Decimals
6 M2 Lesson 15: Decimal Multiplication
6 M2 Lesson 19: Expressing Quotients as Decimals
6 M2 Topic F: Decimal Division

5 M3 Topic B: Multiplication of Fractions
5 M5 Lesson 12: Multiply mixed numbers.
6 M2 Topic B: Dividing Fractions
6 M2 Topic C: Dividing Fractions Fluently
6 M2 Lesson 11: Applications of Fraction Division
6 M2 Lesson 12: Fraction Operations in a Real-World Situation
6 M2 Lesson 13: Decimal Addition and Subtraction
6 M2 Lesson 15: Decimal Multiplication
6 M2 Lesson 16: Applications of Decimal Operations
6 M2 Lesson 20: Real-World Division Problems
6 M2 Lesson 24: Living on Mars
6 M4 Lesson 1: Expressions with Addition and Subtraction
6 M4 Lesson 2: Expressions with Multiplication and Division

6 M2 Lesson 11: Applications of Fraction Division
6 M2 Lesson 12: Fraction Operations in a Real-World Situation
6 M2 Lesson 13: Decimal Addition and Subtraction
6 M2 Lesson 15: Decimal Multiplication
6 M2 Lesson 16: Applications of Decimal Operations
6 M2 Lesson 20: Real-World Division Problems
6 M2 Lesson 24: Living on Mars
6 M4 Lesson 1: Expressions with Addition and Subtraction
6 M4 Lesson 2: Expressions with Multiplication and Division

MA.6.NSO.2.3

Solve multi-step real-world problems involving any of the four operations with positive multi-digit decimals or positive fractions, including mixed numbers.

Number Sense and Operations

MA.6.NSO. 3 Apply properties of operations to rewrite numbers in equivalent forms.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.NSO.3.1
Given a mathematical or real-world
context, find the greatest common
factor and least common multiple of two
whole numbers.

MA.6.NSO.3.2
 Rewrite the sum of two composite whole

 numbers having a common factor, as a common factor multiplied by the sum of two whole numbers.
MA.6.NSO.3.3

Evaluate positive rational numbers and integers with natural number exponents.

MA.6.NSO.3.4

Express composite whole numbers as a product of prime factors with natural number exponents.

MA.6.NSO.3.5

Rewrite positive rational numbers in different but equivalent forms including fractions, terminating decimals and percentages.

6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

6 M4 Lesson 3: Exploring Exponents
6 M4 Lesson 4: Evaluating Expressions with Exponents
6 M4 Lesson 5: Exploring Order of Operations
6 M4 Lesson 6: Order of Operations

6 M2 Topic A: Factors, Multiples, and Divisibility

6 M2 Lesson 3: The Greatest Common Factor
6 M4 Lesson 3: Exploring Exponents

6 M1 Lesson 22: Introduction to Percents

Number Sense and Operations

MA.6.NSO.4 Extend understanding of operations with integers.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

MA.6.NSO.4.1	7 M2 Lesson 1: Combining Opposites
Apply and extend previous understandings of operations with whole	7 M 2 Lesson 2: Adding Integers
numbers to add and subtract integers with procedural fluency.	7 M 2 Lesson 4: Adding Integers Efficiently
	7 M 2 Lesson 7: What Subtraction Means
	7 M 2 Lesson 8: Subtracting Integers, Part 1
7 M 2 Lesson 9: Subtracting Integers, Part 2	

Algebraic Reasoning

MA.6.AR. 1 Apply previous understanding of arithmetic expressions to algebraic expressions.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.AR.1.1

Given a mathematical or real-world context, translate written descriptions into algebraic expressions and translate algebraic expressions into written descriptions.

6 M4 Topic B: Expressions and Real-World Problems
6 M4 Lesson 16: Equivalent Algebraic Expressions

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.AR.1.2 Translate a real-world written description into an algebraic inequality in the form of $x>a, x<a, x \geq a$ or $x \leq a$. Represent the inequality on a number line.	6 M4 Lesson 18: Inequalities and Solutions
MA.6.AR.1.3	6 M 4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
Evaluate algebraic expressions using substitution and order of operations.	6 M 4 Lesson 11: Modeling Real-World Situations with Expressions

Algebraic Reasoning

MA.6.AR. 2 Develop an understanding for solving equations and inequalities. Write and solve one-step equations in one variable.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.AR.2.1

Given an equation or inequality and a specified set of integer values, determine which values make the equation or inequality true or false.

6 M4 Lesson 17: Equations and Solutions
6 M4 Lesson 18: Inequalities and Solutions

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.AR.2. 2

Write and solve one-step equations in one variable within a mathematical or real-world context using addition and subtraction, where all terms and solutions are integers.

MA.6.AR.2.3

Write and solve one-step equations in one variable within a mathematical or real-world context using multiplication and division, where all terms and solutions are integers.

MA.6.AR.2.4

Determine the unknown decimal or fraction in an equation involving any of the four operations, relating three numbers, with the unknown

6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 21: Solving Problems with Equations

6 M4 Lesson 20: Solving Equations with Multiplication and Division
6 M4 Lesson 21: Solving Problems with Equations

6 M4 Lesson 17: Equations and Solutions

6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 20: Solving Equations with Multiplication and Division
6 M4 Lesson 21: Solving Problems with Equations in any position.

Algebraic Reasoning

MA.6.AR. 3 Understand ratio and unit rate concepts and use them to solve problems.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.AR.3.1	6 M1 Lesson 2: Introduction to Ratios
Given a real-world context, write and interpret ratios to show the relative sizes of two quantities using appropriate notation: $\frac{a}{b}, a$ to b, or $a: b$ where $b \neq 0$.	6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 4: Exploring Ratios by Making Batches	
6 M1 Lesson 5: Equivalent Ratios	
6 M1 Lesson 8: Addition Patterns in Ratio Relationships	

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

MA.6.AR.3.4
 6 M1 Topic E: Percents

Apply ratio relationships to solve mathematical and real-world problems involving percentages using the relationship between two quantities.

MA.6.AR.3.5

Solve mathematical and real-world problems involving ratios, rates and unit rates, including comparisons, mixtures, ratios of lengths and conversions within the same measurement system.

6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 M1 Lesson 5: Equivalent Ratios
6 M1 Topic B: Collections of Equivalent Ratios
6 M1 Topic C: Comparing Ratio Relationships
6 M1 Topic D: Rates
6 M4 Lesson 22: Relationship Between Two Variables
6 M4 Lesson 23: Graphs of Ratio Relationships
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 13: Surface Area in Real-World Situations

Geometric Reasoning

MA.6.GR. 1 Apply previous understanding of the coordinate plane to solve problems.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.GR.1.1

Extend previous understanding of the coordinate plane to plot rational number ordered pairs in all four quadrants and on both axes. Identify the x - or y-axis as the line of reflection when two ordered pairs have an opposite x - or y-coordinate.

MA.6.GR.1.2

Find distances between ordered pairs, limited to the same x-coordinate or the same y-coordinate, represented on the coordinate plane.

MA.6.GR.1.3

Solve mathematical and real-world problems by plotting points on a coordinate plane, including finding the perimeter or area of a rectangle.

6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
6 M3 Lesson 11: Plotting Points in the Coordinate Plane
6 M3 Lesson 12: Reflections in the Coordinate Plane
6 M3 Lesson 13: Constructing the Coordinate Plane

6 M3 Lesson 15: Distance in the Coordinate Plane

6 M3 Lesson 14: Modeling with the Coordinate Plane

6 M3 Topic D: Solving Problems in the Coordinate Plane
6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane

Geometric Reasoning

MA.6.GR. 2 Model and solve problems involving two-dimensional figures and three-dimensional figures.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.GR.2.1	6 M5 Lesson 2: The Area of a Right Triangle
Derive a formula for the area of a	6 M5 Lesson 3: The Area of a Triangle
right triangle using a rectangle. Apply a formula to find the area of a triangle.	6 M5 Lesson 4: Areas of Triangles in Real-World Situations
MA.6.GR.2.2	6 M5 Lesson 1: The Area of a Parallelogram
Solve mathematical and real-world problems involving the area of quadrilaterals and composite figures by decomposing them into triangles or rectangles.	6 M5 Topic B: Problem Solving with Area
MA.6.GR.2.3	6 M5 Topic D: Volumes of Right Rectangular Prisms
Solve mathematical and real-world problems involving the volume of right rectangular prisms with positive rational number edge lengths using a visual model and a formula.	
MA.6.GR.2.4	6 M5 Topic C: Nets and Surface Area
Given a mathematical or real-world context, find the surface area of right rectangular prisms and right rectangular pyramids using the figure's net.	6 M5 Lesson 19: Volume and Surface Area in Real-World Situations

Data Analysis and Probability

MA.6.DP. 1 Develop an understanding of statistics and determine measures of center and measures of variability.
Summarize statistical distributions graphically and numerically.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.DP.1.1	6 M6 Lesson 1: Posing Statistical Questions
Recognize and formulate a statistical question that would generate numerical data.	6 M6 Lesson 2: Describing a Data Distribution
MA.6.DP.1.2	6 M6 Lesson 6: Selecting a Data Display
Given a numerical data set within a real-world context, find and interpret mean, median, mode and range.	6 M6 Lesson 17: Developing a Statistical Project
	6 M6 Topic B: Mean and Mean Absolute Deviation

Florida's B.E.S.T. Standards

 for Mathematics
Aligned Components of Eureka Math²

MA.6.DP.1.4	5 M2 Topic D: Problem Solving and Line Plots with Fractional Measurements
Given a histogram or line plot within a real-world context, qualitatively describe and interpret the spread and distribution of the data, including any symmetry, skewness, gaps, clusters, outliers and the range.	6 M6 Lesson 2: Describing a Data Distribution
	6 M6 Lesson 3: Creating a Dot Plot
	6 M6 Lesson 4: Creating a Histogram
	6 M6 Lesson 5: Comparing Data Displays
	6 M6 Lesson 6: Selecting a Data Display
	6 M6 Topic B: Mean and Mean Absolute Deviation
	6 M6 Lesson 12: Using the Median to Describe the Center
	6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
	6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M6 Lesson 19: Comparing Data Distributions
	6 M6 Lesson 20: Choosing a Measure of Center
	6 M6 Lesson 21: Comparing Measures of Variability
	6 M6 Lesson 22: Presenting Statistical Projects
MA.6.DP.1.5 Create box plots and histograms to represent sets of numerical data within real-world contexts.	6 M6 Lesson 4: Creating a Histogram
	6 M6 Lesson 5: Comparing Data Displays
	6 M6 Lesson 6: Selecting a Data Display
	6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
	6 M6 Lesson 15: More Practice with Box Plots
	6 M6 Lesson 16: Interpreting Box Plots
	6 M6 Lesson 19: Comparing Data Distributions
	6 M6 Lesson 22: Presenting Statistical Projects

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.6.DP.1.6

Given a real-world scenario, determine and describe how changes in data values impact measures of center and variation.

6 M6 Topic B: Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 M6 Lesson 20: Choosing a Measure of Center
6 M6 Lesson 21: Comparing Measures of Variability

