Grade 8 | Florida's B.E.S.T. Standards for Mathematics Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Thinking and Reasoning Standards

Aligned Components of Eureka Math ${ }^{2}$

MA.K12.MTR.1.1

Actively participate in effortful learning both individually and collectively.

MA.K12.MTR.2.1
Demonstrate understanding by representing problems in multiple ways.

MA.K12.MTR.3.1

Complete tasks with mathematical fluency.

MA.K12.MTR.4.1

Engage in discussions that reflect on the mathematical thinking of self and others.

Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

MA.K12.MTR.3.1 Complete tasks with mathematical fluency.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.4.1 Engage in discussions that reflect on the mathematical thinking of self and others.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.5.1	
Use patterns and structure to help understand and connect	
mathematical concepts.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.6.1	
Assess the reasonableness of solutions.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.7.1	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

Number Sense and Operations

MA.8.NSO.1 Solve problems involving rational numbers, including numbers in scientific notation, and extend the understanding of rational numbers to irrational numbers.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.NSO.1.1

Extend previous understanding of rational numbers to define irrational numbers within the real number system. Locate an approximate value of a numerical expression involving irrational numbers on a number line.

MA.8.NSO.1.2

Plot, order and compare rational and irrational numbers, represented in various forms.

MA.8.NSO.1.3

Extend previous understanding of the Laws of Exponents to include integer exponents. Apply the Laws of Exponents to evaluate numerical expressions and generate equivalent numerical expressions, limited to integer exponents and rational number bases, with procedural fluency.

8 M1 Lesson 21: Approximating Values of Roots and π^{2}
8 M1 Lesson 22: Familiar and Not So Familiar Numbers
8 M1 Lesson 23: Ordering Irrational Numbers
8 M4 Lesson 5: An Interesting Application of Linear Equations, Part 1
8 M4 Lesson 6: An Interesting Application of Linear Equations, Part 2

8 M1 Lesson 21: Approximating Values of Roots and π^{2}
8 M1 Lesson 23: Ordering Irrational Numbers

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.NSO.1.4	8 M1 Lesson 2: Comparing Large Numbers
Express numbers in scientific notation to represent and approximate very large or very small quantities. Determine how many times larger or smaller one number is compared to a second number.	8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation 8 M1 Topic C: Applications of the Properties and Definitions of Exponents
MA.8.NSO.1.5 Add, subtract, multiply and divide numbers expressed in scientific notation with procedural fluency.	8 M1 Lesson 2: Comparing Large Numbers 8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation 8 M1 Lesson 12: Operations with Numbers in Scientific Notation 8 M1 Lesson 13: Applications with Numbers in Scientific Notation 8 M1 Lesson 14: Choosing Units of Measurement 8 M1 Lesson 15: Get to the Point
MA.8.NSO.1.6 Solve real-world problems involving operations with numbers expressed in scientific notation.	8 M1 Lesson 2: Comparing Large Numbers 8 M1 Lesson 4: Adding and Subtracting Numbers Written in Scientific Notation 8 M1 Lesson 12: Operations with Numbers in Scientific Notation 8 M1 Lesson 13: Applications with Numbers in Scientific Notation 8 M1 Lesson 14: Choosing Units of Measurement 8 M1 Lesson 15: Get to the Point

Florida's B.E.S.T. Standards

 for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

MA.8.NSO.1.7

Solve multi-step mathematical and real-world problems involving the order of operations with rational numbers including exponents and radicals.

```
7 M2 Lesson 25: Writing and Evaluating Expressions with Rational Numbers, Part }
7M2 Lesson 26: Writing and Evaluating Expressions with Rational Numbers, Part 2
7M3 Lesson 9: Solving Equations to Determine Unknown Angle Measures
7 M3 Lesson 10: Problem Solving with Unknown Angle Measures
7M3 Lesson 11: Dominoes and Dominoes
7 M3 Lesson 16: Using Equations to Solve Rate Problems
7 M3 Lesson 17: Using Equations to Solve Problems
8 M1 Lesson 16: Perfect Squares and Perfect Cubes
8 M1 Lesson 17: Solving Equations with Squares and Cubes
8 M1 Lesson 20: Square Roots
8 M1 Lesson 22: Familiar and Not So Familiar Numbers
8 M1 Lesson 24: Revisiting Equations with Squares and Cubes
```


Algebraic Reasoning

MA.8.AR. 1 Generate equivalent algebraic expressions.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.1.1

Apply the Laws of Exponents to generate equivalent algebraic expressions, limited to integer exponents and monomial bases.

8 M1 Topic B: Properties and Definitions of Exponents

Florida's B.E.S.T. Standards

 for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.1.2

Apply properties of operations to multiply two linear expressions with rational coefficients.

MA.8.AR.1.3

Rewrite the sum of two algebraic expressions having a common monomial factor as a common factor multiplied by the sum of two algebraic expressions.

A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Algebraic Reasoning

MA.8.AR. 2 Solve multi-step one-variable equations and inequalities.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.2.1

Solve multi-step linear equations in one variable, with rational number coefficients. Include equations with variables on both sides.

MA.8.AR.2.2

Solve two-step linear inequalities in one variable and represent solutions algebraically and graphically.

8 M4 Topic A: Linear Equations in One Variable
8 M4 Lesson 7: Linear Equations with More Than One Solution
8 M4 Lesson 8: Another Possible Number of Solutions
8 M4 Lesson 10: Using Linear Equations to Solve Real-World Problems
8 M4 Lesson 11: Planning a Trip

7 M3 Topic D: Inequalities

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.2.3

Given an equation in the form of $x^{2}=p$ and $x^{3}=q$, where p is a whole number and q is an integer, determine the real solutions.
8 M1 Lesson 16: Perfect Squares and Perfect Cubes
8 M1 Lesson 17: Solving Equations with Squares and Cubes
8 M1 Lesson 20: Square Roots
8 M1 Lesson 22: Familiar and Not So Familiar Numbers

Algebraic Reasoning

MA.8.AR. 3 Extend understanding of proportional relationships to two-variable linear equations.

Florida's B.E.S.T. Standards

 for MathematicsAligned Components of Eureka Math ${ }^{2}$
MA.8.AR.3.1
Determine if a linear relationship is also
a proportional relationship.

MA.8.AR.3.2

Given a table, graph or written description of a linear relationship, determine the slope.

7 M1 Topic A: Understanding Proportional Relationships
7 M1 Lesson 14: Extreme Bicycles

8 M4 Lesson 15: Comparing Proportional Relationships
8 M4 Lesson 16: Proportional Relationships and Slope

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.3.3	8 M3 Lesson 17: Similar Triangles on a Line
Given a table, graph or written description of a linear relationship, write an equation in slope-intercept form.	8 M4 Lesson 16: Proportional Relationships and Slope
	8 M4 Lesson 17: Slopes of Rising Lines
	8 M4 Lesson 18: Slopes of Falling Lines
	8 M4 Lesson 19: Using Coordinates to Find Slope
	8 M4 Lesson 20: Slope-Intercept Form of the Equation of a Line
	8 M6 Lesson 6: Linear Functions and Rate of Change
	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
	8 M6 Lesson 25: Applications of Volume
MA.8.AR.3.4	8 M6 Lesson 6: Linear Functions and Rate of Change
Given a mathematical or real-world context, graph a two-variable linear equation from a written description, a table or an equation in slope-intercept form.	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
	8 M6 Lesson 25: Applications of Volume
MA.8.AR.3.5	8 M6 Lesson 6: Linear Functions and Rate of Change
Given a real-world context, determine and interpret the slope and y-intercept of a two-variable linear equation from a written description, a table, a graph or an equation in slope-intercept form.	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
	8 M6 Lesson 25: Applications of Volume

Algebraic Reasoning

MA.8.AR. 4 Develop an understanding of two-variable systems of equations.

Florida's B.E.S.T. Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

MA.8.AR.4.1

Given a system of two linear equations and a specified set of possible solutions, determine which ordered pairs satisfy the system of linear equations.

MA.8.AR.4.2

Given a system of two linear equations represented graphically on the same coordinate plane, determine whether there is one solution, no solution or infinitely many solutions.

MA.8.AR.4.3

Given a mathematical or real-world context, solve systems of two linear equations by graphing.

Supplemental material is necessary to address this standard.

8 M5 Topic A: Solving Systems of Linear Equations Graphically

8 M5 Topic A: Solving Systems of Linear Equations Graphically
8 M5 Topic C: Writing and Solving Systems of Linear Equations

Functions

MA.8.F. 1 Define, evaluate and compare functions.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.F.1.1	8 M6 Lesson 1: Motion and Speed
Given a set of ordered pairs, a table, a graph or mapping diagram, determine whether the relationship is a function. Identify the domain and range of the relation.	8 M6 Lesson 2: Definition of a Function
8 M6 Lesson 4: More Examples of Functions	
MA.8.F.1.2	8 M6 Lesson 5: Graphs of Functions and Equations
Given a function defined by a graph or an	
equation, determine whether the function Functions and Their Graphs	
is a linear function. Given an input-output	
table, determine whether it could	
represent a linear function.	8 M6 Lesson 10: Graphs of Nonlinear Functions
MA.8.F.1.3	8 M6 Lesson 3: Linear Functions and Proportionality
Analyze a real-world written description or graphical representation of a functional relationship between two quantities and identify where the function is increasing, decreasing or constant.	8 M6 Lesson 10: Graphs of Nonlinear Functions

Geometric Reasoning

MA.8.GR. 1 Develop an understanding of the Pythagorean Theorem and angle relationships involving triangles.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.GR.1.1

Apply the Pythagorean Theorem to solve mathematical and real-world problems involving unknown side lengths in right triangles.

8 M1 Lesson 18: The Pythagorean Theorem
8 M1 Lesson 19: Using the Pythagorean Theorem
8 M1 Lesson 20: Square Roots
8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
8 M2 Lesson 21: Applying the Pythagorean Theorem
8 M2 Lesson 22: On the Right Path
8 M3 Lesson 16: Similar Right Triangles

MA.8.GR.1.2

Apply the Pythagorean Theorem to solve mathematical and real-world problems involving the distance between two points in a coordinate plane.

MA.8.GR.1.3

Use the Triangle Inequality Theorem to determine if a triangle can be formed from a given set of sides. Use the converse of the Pythagorean Theorem to determine if a right triangle can be formed from a given set of sides.

8 M2 Lesson 20: Distance in the Coordinate Plane
8 M2 Lesson 22: On the Right Path

7 M4 Topic A: Constructing Geometric Figures
7 M4 Topic B: Constructing Triangles
8 M1 Lesson 18: The Pythagorean Theorem
8 M1 Lesson 19: Using the Pythagorean Theorem
8 M1 Lesson 20: Square Roots
8 M2 Lesson 19: Using the Pythagorean Theorem and Its Converse
8 M2 Lesson 21: Applying the Pythagorean Theorem
8 M2 Lesson 22: On the Right Path
8 M3 Lesson 16: Similar Right Triangles

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.GR.1.4

Solve mathematical problems involving the relationships between supplementary, complementary, vertical or adjacent angles.

MA.8.GR.1.5

Solve problems involving the relationships of interior and exterior angles of a triangle.

8 M2 Topic C: Angle Relationships
8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 14: Using Similar Figures to Find Unknown Side Lengths
8 M3 Lesson 15: Applications of Similar Figures
8 M3 Lesson 16: Similar Right Triangles

Supplemental material is necessary to address this standard.

MA.8.GR.1.6

Develop and use formulas for the sums of the interior angles of regular polygons by decomposing them into triangles.

Geometric Reasoning

MA.8.GR. 2 Understand similarity and congruence using models and transformations.

Florida's B.E.S.T. Standards

 for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

MA.8.GR.2.1

Given a preimage and image generated by a single transformation, identify the transformation that describes the relationship.

8 M3 Lesson 11: Similar Figures

8 M3 Lesson 12: Exploring Angles in Similar Triangles
8 M3 Lesson 13: Similar Triangles
8 M3 Lesson 17: Similar Triangles on a Line

Florida's B.E.S.T. Standards

 for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

MA.8.GR.2.2	8 M3 Topic A: Dilations
Given a preimage and image generated	8 M3 Topic B: Properties of Dilations
by a single dilation, identify the scale	8 M3 Lesson 9: Describing Dilations
	8 M3 Lesson 10: Sequencing Transformations
	8 M3 Lesson 16: Similar Right Triangles
MA.8.GR.2.3 Describe and apply the effect of a single transformation on two-dimensional figures using coordinates and the coordinate plane.	8 M2 Lesson 4: Translations and Reflections on the Coordinate Plane
	8 M2 Lesson 6: Rotations on the Coordinate Plane
	8 M2 Lesson 9: Ordering Sequences of Rigid Motions
	8 M3 Topic A: Dilations
	8 M3 Topic B: Properties of Dilations
	8 M3 Lesson 9: Describing Dilations
	8 M3 Lesson 10: Sequencing Transformations
	8 M3 Lesson 16: Similar Right Triangles
MA.8.GR.2.4	8 M3 Lesson 12: Exploring Angles in Similar Triangles
Solve mathematical and real-world problems involving proportional relationships between similar triangles.	8 M3 Lesson 13: Similar Triangles
	8 M3 Topic D: Applications of Similar Figures

Data Analysis and Probability

MA.8.DP. 1 Represent and investigate numerical bivariate data.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

MA.8.DP.1.1 Given a set of real-world bivariate numerical data, construct a scatter plot or a line graph as appropriate for the context.	8 M6 Lesson 11: Scatter Plots
8 M6 Lesson 12: Patterns in Scatter Plots	
MA.8.DP.1.2 Given a scatter plot within a real-world context, describe patterns of association.	8 M6 Lesson 14: Determining an Equation of a Line Fit to Data
MA.8.DP.1.3	8 M6 Lesson 11: Scatter Plots
Given a scatter plot with a linear	
association, informally fit a straight line. Patterns in Scatter Plots	

Data Analysis and Probability

MA.8.DP. 2 Represent and find probabilities of repeated experiments.

Florida's B.E.S.T. Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

MA.8.DP.2.1 Determine the sample space for a repeated experiment.	7 M 6 Lesson 5: Multistage Experiments
MA.8.DP.2.2	7 M 6 Lesson 4: Theoretical Probability
Find the theoretical probability of an event related to a repeated experiment.	$7 \mathrm{M6}$ Lesson 7: The Law of Large Numbers
MA.8.DP.2.3	$7 \mathrm{M6}$ Lesson 4: Theoretical Probability
Solve real-world problems involving probabilities related to single or repeated experiments, including making predictions based on theoretical probability.	7 M 6 Lesson 7: The Law of Large Numbers

