EUREKA MATH².

Algebra I | Florida's B.E.S.T. Standards for Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver *exponentially better* math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Thinking and Reasoning Standards	Aligned Components of Eureka Math ²
MA.K12.MTR.1.1 Actively participate in effortful learning both individually and collectively.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.2.1 Demonstrate understanding by representing problems in multiple ways.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.3.1 Complete tasks with mathematical fluency.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.4.1 Engage in discussions that reflect on the mathematical thinking of self and others.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.5.1 Use patterns and structure to help understand and connect mathematical concepts.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.6.1 Assess the reasonableness of solutions.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.
MA.K12.MTR.7.1 Apply mathematics to real-world contexts.	Lessons in every module engage students in mathematical thinking and reasoning. These are indicated in margin notes included with every lesson.

Number Sense and Operations

MA.912.NSO.1 Generate equivalent expressions and perform operations with expressions involving exponents, radicals or logarithms.

Aligned Components of Eureka Math ²
A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents
8 M1 Topic B: Properties and Definitions of Exponents
A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents
Supplemental material is necessary to address this standard.

Algebraic Reasoning

MA.912.AR.1 Interpret and rewrite algebraic expressions and equations in equivalent forms.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of Eureka Math ²
MA.912.AR.1.1	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
Identify and interpret parts of an equation or expression that represent a quantity in terms of a mathematical or real-world context, including viewing one or more of its parts as a single entity.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time Math 1 M1 Lesson 4: Interpreting Linear Expressions
MA.912.AR.1.2 Rearrange equations or formulas to isolate a quantity of interest.	A1 M1 Lesson 12: Rearranging Formulas A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
MA.912.AR.1.3 Add, subtract and multiply polynomial expressions with rational number coefficients.	A1 M1 Lesson 3: Polynomial Expressions A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities
MA.912.AR.1.4 Divide a polynomial expression by a monomial expression with	Supplemental material is necessary to address this standard.

rational number coefficients.

for Mathematics	Aligned Components of Eureka Math ²
MA.912.AR.1.7	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
Rewrite a polynomial expression as a product of polynomials over the real number system.	A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula

Elorido's P.E.C.T. Standarda

Algebraic Reasoning

MA.912.AR.2 Write, solve and graph linear equations, functions and inequalities in one and two variables.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.2.1	A1 M1 Lesson 7: Printing Presses
Given a real-world context, write and solve one-variable multi-step linear equations.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable
MA.912.AR.2.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Write a linear two-variable equation to represent relationships between quantities from a graph, a written description or a table of values within a mathematical or real-world context.	A1 M2 Lesson 3: Creating Linear Equations in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

MA.912.AR.2.3 Write a linear two-variable equation for a line that is parallel or perpendicular to a given line and goes through a given point.	Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
MA.912.AR.2.4 Given a table, equation or written description of a linear function, graph that function, and determine and interpret its key features.	A1 M3 Topic A: Functions and Their Graphs A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 11: Comparing Functions
MA.912.AR.2.5 Solve and graph mathematical and real-world problems that are modeled with linear functions. Interpret key features and determine constraints in terms of the context.	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions A1 M3 Lesson 3: The Graph of a Function A1 M3 Lesson 6: Representations of Functions A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 11: Comparing Functions
MA.912.AR.2.6 Given a mathematical or real-world context, write and solve one-variable linear inequalities, including compound inequalities. Represent solutions algebraically or graphically.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable A1 M1 Lesson 14: Solution Sets of Compound Statements A1 M1 Lesson 15: Solving and Graphing Compound Inequalities A1 M1 Lesson 17: Solving Absolute Value Inequalities

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.2.7	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
Write two-variable linear inequalities to represent relationships between quantities from a graph or a written description within a mathematical or real-world context.	A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities A1 M6 Lesson 6: Designing a Fundraiser
MA.912.AR.2.8 Given a mathematical or real-world context, graph the solution set to a two-variable linear inequality.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables

Elorida's REST Standards

Algebraic Reasoning

MA.912.AR.3 Write, solve and graph quadratic equations, functions and inequalities in one and two variables.

Aligned Components of <i>Eureka Math</i> ²
A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.3.4	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
Write a quadratic function to represent the relationship between two quantities	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
from a graph, a written description or a table of values within a mathematical	A1 M4 Lesson 25: Maximizing Area
or real-world context.	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M6 Lesson 7: World Record Doughnut
MA.912.AR.3.5	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
Given the <i>x</i> -intercepts and another point on the graph of a quadratic function, write the equation for the function.	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
MA.912.AR.3.6	A1 M4 Lesson 10: Zeros of Functions
Given an expression or equation representing a quadratic function, determine the vertex and zeros and interpret them in terms of a real-world context.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area

Florida's B.F.S.T. Standards

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.3.7	A1 M4 Lesson 4: Graphs of Quadratic Functions
Given a table, equation or written description of a quadratic function, graph that function, and determine and interpret its key features.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
MA.912.AR.3.8	A1 M4 Lesson 1: Falling Objects
Solve and graph mathematical and	A1 M4 Lesson 2: Projectile Motion
real-world problems that are modeled	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
with quadratic functions. Interpret key features and determine constraints in terms of the context.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter

Florida's B.E.S.T. Standards

Alianed Components of Euroka Math²

Algebraic Reasoning

MA.912.AR.4 Write, solve and graph absolute value equations, functions and inequalities in one and two variables.

for Mathematics	
MA.912.AR.4.1	A1 M1 Lesson 16: Solving Absolute Value Equations
Given a mathematical or real-world context, write and solve one-variable absolute value equations.	Math 1 M1 Lesson 16: Applying Absolute Value
MA.912.AR.4.3	A1 M3 Lesson 15: The Absolute Value Function
Given a table, equation or written description of an absolute value function, graph that function and determine its key features.	

Florida's B.E.S.T. Standards for Mathematics Aligned Components of *Eureka Math*²

Algebraic Reasoning

MA.912.AR.5 Write, solve and graph exponential and logarithmic equations and functions in one and two variables.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.5.3	A1 M5 Topic C: Exponential Growth and Decay
Given a mathematical or real-world context, classify an exponential function as representing growth or decay.	A1 M5 Lesson 21: World Population Prediction A1 M5 Lesson 22: A Closer Look at Populations

for Mathematics	
MA.912.AR.5.4	A1 M5 Lesson 8: Exponential Functions
Write an exponential function to represent a relationship between two quantities from a graph, a written description or a table of values within a mathematical or real-world context.	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Lesson 4: The Deal
MA.912.AR.5.6	A1 M5 Lesson 11: Graphing Exponential Functions
Given a table, equation or written description of an exponential function, graph that function and determine its key features.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Aligned Components of Eureka Math²

Florida's B.E.S.T. Standards for Mathematics

Algebraic Reasoning

MA.912.AR.9 Write and solve a system of two- and three-variable equations and inequalities that describe quantities or relationships.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.9.1	A1 M2 Lesson 7: Low-Flow Showerhead
Given a mathematical or real-world context, write and solve a system of two-variable linear equations algebraically or graphically.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables A1 M2 Lesson 9: A New Way to Solve Systems A1 M2 Lesson 10: The Elimination Method A1 M2 Lesson 11: Applications of Systems of Equations

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.AR.9.4	A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
Graph the solution set of a system of two-variable linear inequalities.	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
	A1 M6 Lesson 6: Designing a Fundraiser
MA.912.AR.9.6	A1 M2 Lesson 7: Low-Flow Showerhead
Given a real-world context, represent constraints as systems of linear equations or inequalities. Interpret solutions to problems as viable or non-viable options.	A1 M2 Lesson 11: Applications of Systems of Equations
	A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
	A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
	A1 M6 Lesson 6: Designing a Fundraiser

Florida's R F S T Standards

Functions

MA.912.F.1 Understand, compare and analyze properties of functions.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
MA.912.F.1.1	A1 M3 Lesson 6: Representations of Functions
Given an equation or graph that defines a function, classify the function type. Given an input-output table, determine a function type that could represent it.	A1 M3 Topic C: Piecewise-Defined Linear Functions
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M5 Topic A: Arithmetic and Geometric Sequences
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 15: Calculating Interest
	A1 M5 Lesson 18: Modeling Populations

for Mathematics	Alighed Components of Eureka Math ²
MA.912.F.1.2	A1 M3 Lesson 1: The Definition of a Function
Given a function represented in function notation, evaluate the function for an input in its domain. For a real-world context, interpret the output.	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
	A1 M3 Lesson 6: Representations of Functions
	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle
MA.912.F.1.3	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
rate of change of a real-world situation	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
represented graphically, algebraically or in a table over a specified interval.	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 20: Comparing Growth of Functions
	A1 M5 Lesson 24: Modeling an Invasive Species Population
MA.912.F.1.5	8 M6 Lesson 7: Interpreting Rate of Change and Initial Value
Compare key features of linear functions each represented	8 M6 Lesson 8: Comparing Functions
	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
algebraically, graphically, in tables or written descriptions.	A1 M3 Lesson 11: Comparing Functions

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

for Mathematics	Aligned Components of Eureka Math ²
MA.912.F.1.6	A1 M3 Lesson 11: Comparing Functions
Compare key features of linear and nonlinear functions each represented algebraically, graphically, in tables or written descriptions.	A1 M5 Lesson 15: Calculating Interest
	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 20: Comparing Growth of Functions
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
MA.912.F.1.8	A1 M5 Lesson 15: Calculating Interest
Determine whether a linear, quadratic or exponential function best models a given real-world situation.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

Functions

MA.912.F.2 Identify and describe the effects of transformations on functions. Create new functions given transformations.

Florida's B.E.S.T. Standards	
for Mathematics	

Aligned Components of Eureka Math²

MA.912.F.2.1	A1 M3 Topic D: Transformations of Functions
Identify the effect on the graph or table of a given function after replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$ and $f(x + k)$ for specific values of k .	A1 M4 Lesson 20: Art with Transformations
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Financial Literacy

MA.912.FL.3 Describe the advantages and disadvantages of short-term and long-term purchases.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of Eureka Math ²
MA.912.FL.3.2	A1 M5 Lesson 15: Calculating Interest
Solve real-world problems involving simple, compound and continuously compounded interest.	A1 M5 Lesson 19: Analyzing Exponential Growth Supplemental material is necessary to address continuously compounded interest.
MA.912.FL.3.4	A1 M5 Lesson 15: Calculating Interest
Explain the relationship between simple interest and linear growth. Explain the relationship between compound interest and exponential growth and the relationship between continuously compounded interest and exponential growth.	A1 M5 Lesson 19: Analyzing Exponential Growth Supplemental material is necessary to address continuously compounded interest.

Data Analysis and Probability

MA.912.DP.1 Summarize, represent and interpret categorical and numerical data with one and two variables.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of Eureka Math ²
MA.912.DP.1.1	A1 M1 Lesson 18: Distributions and Their Shapes
Given a set of data, select an appropriate	A1 M1 Lesson 19: Describing the Center of a Distribution
method to represent the data, depending on whether it is numerical or categorical	A1 M1 Lesson 20: Using Center to Compare Data Distributions
data and on whether it is univariate	A1 M2 Lesson 15: Relationships Between Quantitative Variables
or bivariate.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
	A1 M2 Topic D: Categorical Data on Two Variables
MA.912.DP.1.2	A1 M1 Topic D: Univariate Data
Interpret data distributions represented	A1 M2 Topic C: Numerical Data on Two Variables
in various ways. State whether the data is numerical or categorical, whether it is	A1 M2 Topic D: Categorical Data on Two Variables
univariate or bivariate and interpret the	A1 M6 Topic A: Modeling Bivariate Quantitative Data
different components and quantities	
in the display.	
MA.912.DP.1.3	A1 M2 Lesson 20: Interpreting Correlation
Explain the difference between	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
correlation and causation in the contexts of both numerical and categorical data.	
MA.912.DP.1.4	Supplemental material is necessary to address this standard.
Estimate a population total, mean	
or percentage using data from a sample survey; develop a margin of error through	
the use of simulation.	

© 2024 Great Minds PBC | greatminds.org

Data Analysis and Probability

MA.912.DP.2 Solve problems involving univariate and bivariate numerical data.

Florida's B.E.S.T. Standards for Mathematics

Aligned Components of Eureka Math²

MA.912.DP.2.4 Fit a linear function to bivariate numerical data that suggests a linear association and interpret the slope and <i>y</i> -intercept of the model. Use the model to solve real-world problems in terms of the context of the data.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data A1 M6 Topic A: Modeling Bivariate Quantitative Data
MA.912.DP.2.6 Given a scatter plot with a line of fit and residuals, determine the strength and direction of the correlation. Interpret strength and direction within a real-world context.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Data Analysis and Probability

MA.912.DP.3 Solve problems involving categorical data.

Florida's B.E.S.T. Standards for Mathematics	Aligned Components of Eureka Math ²
MA.912.DP.3.1	A1 M2 Topic D: Categorical Data on Two Variables
Construct a two-way frequency table summarizing bivariate categorical data. Interpret joint and marginal frequencies and determine possible associations in terms of a real-world context.	