7-8 | Idaho Mathematics Content Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Ratios and Proportional Relationships

7.RP.A Analyze proportional relationships and use them to solve real-world and mathematical problems.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.RP.A. 1

Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.

7.RP.A. 2

Recognize and represent proportional relationships between quantities.

7.RP.A.2.a

Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

7.RP.A.2.b

Identify the constant of proportionality in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. Recognize the constant of proportionality as both the unit rate and as the multiplicative comparison between two quantities.

7-8 M2 Lesson 12: An Experiment with Ratios and Rates
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M2 Lesson 12: An Experiment with Ratios and Rates
7-8 M2 Lesson 13: Exploring Tables of Proportional Relationships
7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 19: Proportional Reasoning and Percents

7-8 M2 Lesson 14: Exploring Graphs of Proportional Relationships
7-8 M2 Lesson 15: Relating Representations of Proportional Relationships
7-8 M2 Lesson 16: Applying Proportional Reasoning

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.RP.A.2.c	$7-8 \mathrm{M} 2$ Lesson 13: Exploring Tables of Proportional Relationships
Represent proportional relationships	
by equations.	$7-8 \mathrm{M} 2$ Lesson 15: Relating Representations of Proportional Relationships
	$7-8 \mathrm{M} 2$ Lesson 16: Applying Proportional Reasoning
	$7-8 \mathrm{M} 2$ Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
$7-8 \mathrm{M} 2$ Lesson 18: Handstand Sprint	
	$7-8 \mathrm{M} 2$ Lesson 19: Proportional Reasoning and Percents
7.RP.A.2.d	
Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	$7-8 \mathrm{M} 2$ Lesson 15: Relating Representations of Proportional Relationships

The Number System

7.NS.A Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
Idaho Mathematics Content
Standards

Aligned Components of Eureka Math ${ }^{2}$

7.NS.A. 1
 Apply and extend previous understandings of addition and subtraction to add and subtract integers and other rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

7.NS.A.1.a

Describe situations in which opposite quantities combine to make zero.

7.NS.A.1.b

Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite are additive inverses because they have a sum of 0 (e.g., $12.5+(-12.5)=0$). Interpret sums of rational numbers by describing real-world contexts.

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M1 Lesson 1: Adding Integers and Rational Numbers

7-8 M1 Lesson 1: Adding Integers and Rational Numbers

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.NS.A.1.c

Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.
7.NS.A.1.d

Apply properties of operations as strategies to add and subtract rational numbers.

7.NS.A. 2

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide integers and other rational numbers.

7-8 M1 Lesson 3: Finding Distances to Find Differences
7-8 M1 Lesson 4: Subtracting Integers
7-8 M1 Lesson 5: Subtracting Rational Numbers

7-8 M1 Topic A: Add and Subtract Rational Numbers

This standard is fully addressed by the lessons aligned to its subsections.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.NS.A.2.a

Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $\left(-\frac{1}{2}, 1\right)=1$ and the rules for multiplying sigr, nu nubers. Interpret products of rational numbers by describing real-world contexts.

7.NS.A.2.b

Understand that integers can be divided provided that the divisor is not zero, and every quotient of integers (with nonzero divisor) is a rational number. If p and q are integers, then $-\frac{(n)}{q \mid}=\frac{-p}{q}=\frac{p}{-q}$. Interpret quotients of rational numbers by describing real-world contexts.

7.NS.A.2.c

Apply properties of operations as strategies to multiply and divide rational numbers.

7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
 7-8 M1 Lesson 7: Exponential Expressions and Relating Multiplication to Division

7-8 M1 Topic B: Multiply and Divide Rational Numbers

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.NS.A.2.d

Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates or eventually repeats.

7.NS.A. 3

Solve real-world and mathematical problems involving the four operations with integers and other rational numbers.

7-8 M1 Lesson 9: Decimal Expansions of Rational Numbers

7-8 M1 Lesson 1: Adding Integers and Rational Numbers
7-8 M1 Lesson 3: Finding Distances to Find Differences
7-8 M1 Lesson 4: Subtracting Integers
7-8 M1 Lesson 5: Subtracting Rational Numbers
7-8 M1 Lesson 6: Multiplying Integers and Rational Numbers
7-8 M1 Lesson 8: Dividing Integers and Rational Numbers
7-8 M1 Lesson 3: Finding Distances to Find Differences
7-8 M1 Lesson 4: Subtracting Integers
7-8 M1 Lesson 5: Subtracting Rational Numbers
7-8 M1 Lesson 8: Dividing Integers and Rational Numbers

The Number System

8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers.

Idaho Mathematics Content
 Standards
 Aligned Components of Eureka Math ${ }^{2}$

8.NS.A. 1

Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 22: Rational and Irrational Numbers
7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes
7-8 M2 Lesson 6: Expressing Repeating Decimals as Fractions

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

8.NS.A. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

Expressions and Equations

7.EE.A Use properties of operations to generate equivalent expressions.

Aligned Components of Eureka Math ${ }^{2}$

7-8 M1 Lesson 21: Approximating Values of Roots
 7-8 M1 Lesson 22: Rational and Irrational Numbers

Idaho Mathematics Content Standards

7.EE.A. 1

Apply properties of operations to add, subtract, factor, and expand linear expressions with rational coefficients.

7.EE.A. 2

Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related.

7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations

7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 21: Discount, Markup, Sales Tax, and Tip
7-8 M2 Lesson 22: Percent Increase and Percent Decrease

Expressions and Equations

7.EE.B Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

7.EE.B. 3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (integers, fractions, and decimals). Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

7.EE.B. 4

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

7.EE.B.4.a

Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.

```
7-8 M2 Lesson 11: Using Linear Equations to Solve Real-World Problems
7-8 M2 Lesson 17: Using Proportional Reasoning to Solve Multi-Step Problems
7-8 M2 Lesson 18: Handstand Sprint
7-8 M2 Lesson 23: What Is the Best Deal?
```

7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 3: Solving Equations
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

7.EE.B.4.b

Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.

7-8 M2 Lesson 4: Using Equations to Solve Inequalities
7-8 M2 Lesson 5: Solving Problems Involving Equations and Inequalities

Expressions and Equations

8.EE.A Work with radicals and integer exponents.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.A. 1

Know and apply the properties of integer exponents to generate equivalent numerical expressions.

8.EE.A. 2

Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.

```
7-8 M1 Lesson 11: Products of Exponential Expressions with Positive Whole-Number Exponents
7-8 M1 Lesson 12: More Properties of Exponents
7-8 M1 Lesson 13: Making Sense of Integer Exponents
```

7-8 M1 Lesson 18: Solving Equations with Squares and Cubes
7-8 M1 Lesson 19: The Pythagorean Theorem
7-8 M1 Lesson 20: Using the Pythagorean Theorem
7-8 M1 Lesson 21: Approximating Values of Roots
7-8 M1 Lesson 23: Revisiting Equations with Squares and Cubes

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.A. 3

Use numbers expressed in the form of a single digit multiplied by an integer power of ten (scientific notation) to estimate very large or very small quantities, and express how many times as much one is than the other.

8.EE.A. 4

Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. Interpret scientific notation that has been generated by technology.

7-8 M1 Lesson 10: Large and Small Positive Numbers
7-8 M1 Lesson 14: Writing Very Large and Very Small Numbers in Scientific Notation
7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation
7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation
7-8 M1 Lesson 17: Get to the Point

7-8 M1 Lesson 15: Operations with Numbers Written in Scientific Notation
7-8 M1 Lesson 16: Applications with Numbers Written in Scientific Notation
7-8 M1 Lesson 17: Get to the Point

Expressions and Equations

8.EE.B Understand the connections between proportional relationships, lines, and linear equations.

Idaho Mathematics Content

Standards
Aligned Components of Eureka Math ${ }^{2}$

8.EE.B. 5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.B. 6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b
7-8 M4 Lesson 5: Proportional Relationships and Slope
7-8 M4 Lesson 6: Slopes of Rising Lines and Falling Lines7-8 M4 Lesson 7: Using Coordinates to Find Slope7-8 M4 Lesson 8: Slope-Intercept Form of the Equation of a Line

Expressions and Equations

8.EE.C Analyze and solve linear equations and pairs of simultaneous linear equations.

Idaho Mathematics Content
Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.C. 7

Solve linear equations in one variable.

8.EE.C.7.a

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a$ (1 solution), $a=a$ (infinitely many solutions), or $a=b$ (no solution) results (where a and b are different numbers).

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M2 Lesson 8: Solving Equations with Rational Coefficients
7-8 M2 Lesson 9: Linear Equations with More Than One Solution
7-8 M2 Lesson 10: Another Possible Number of Solutions

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.C.7.b

Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

8.EE.C. 8

Analyze and solve pairs of simultaneous linear equations.

8.EE.C.8.a

Understandthatsolutionstoasystemoftwo linearequationsintwovariablescorrespond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously.

8.EE.C.8.b

Solve systems of two linear equations in two variables algebraically (including but not limited to using substitution and elimination strategies), and estimate solutions by graphing the equations; solve simple cases by inspection.

7-8 M2 Lesson 6: Expressing Repeating Decimals as Fractions
7-8 M2 Topic B: Multi-Step Equations and Their Solutions

This standard is fully addressed by the lessons aligned to its subsections.

7-8 M4 Lesson 11: Introduction to Systems of Linear Equations
7-8 M4 Lesson 12: Identifying Solutions
7-8 M4 Lesson 13: More Than One Solution
7-8 M4 Lesson 16: Choosing a Solution Method
7-8 M4 Lesson 19: Back to the Coordinate Plane
7-8 M4 Lesson 20: Modeling a Real-World Problem

7-8 M4 Topic C: Solving Systems of Linear Equations
7-8 M4 Topic D: Writing and Solving Systems of Linear Equations
A1 M2 Lesson 9: A New Way to Solve Systems
A1 M2 Lesson 10: The Elimination Method
A1 M2 Lesson 11: Applications of Systems of Equations

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.EE.C.8.c

Solve real-world and mathematical problems leading to two linear equations in two variables.

7-8 M4 Lesson 17: Writing and Solving Systems of Equations for Mathematical Problems
7-8 M4 Lesson 18: Writing and Solving Systems of Equations for Real-World Problems
7-8 M4 Lesson 20: Modeling a Real-World Problem

Geometry

7.G.A Draw, construct, and describe geometrical figures and describe the relationships between them.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

7.G.A. 1

Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.

7.G.A. 2

Draw (freehand, with ruler and protractor, and with technology) two-dimensional geometric shapes with given conditions.
Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine unique triangles, more than one triangle, or no triangle.

7-8 M3 Topic D: Scale Drawings and Dilations

7-8 M3 Lesson 1: Sketching and Constructing Geometric Figures
7-8 M3 Lesson 2: Conditions of Unique Triangles
7-8 M3 Lesson 3: Exploring and Constructing Circles

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

7.G.A. 3

Describe the shape of the two-dimensional face of the figure that results from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids

```
7-8 M5 Lesson 13: Understanding Planes and Cross Sections
7-8 M5 Lesson 14: Cross Section Scavenger Hunt
7-8 M5 Lesson 15: Proportionality and Scale Factor of Cross Sections
```


Geometry

7.G.B Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

7.G.B. 4

Understand the attributes and measurements of circles.

7.G.B.4.a

Know that a circle is a two-dimensional shape created by connecting all of the points equidistant from a fixed point called the center of the circle.

7.G.B.4.b

Develop an understanding of circle attributes including radius, diameter, circumference, and area and investigate the relationships between each.

7-8 M3 Lesson 3: Exploring and Constructing Circles
7-8 M3 Lesson 4: Area and Circumference of a Circle
7-8 M3 Lesson 5: Area and Circumference of Circular Regions

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

7.G.B.4.c

Informally derive and know the formulas for the area and circumference of a circle and use them to solve problems.

7.G.B. 5

Use facts about supplementary, complementary, vertical, and adjacent angles to write equations and use them to solve for an unknown angle in a figure.

7.G.B. 6

Generalize strategies for finding area, volume, and surface areas of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. Solve real-world and mathematical problems in each of these areas.

```
7-8 M3 Lesson 3: Exploring and Constructing Circles
7-8 M3 Lesson 4: Area and Circumference of a Circle
7-8 M3 Lesson 5: Area and Circumference of Circular Regions
7-8 M3 Lesson 6: Watering a Lawn
```

7-8 M2 Lesson 1: Finding Unknown Angle Measures
7-8 M2 Lesson 2: Using Equivalent Expressions to Solve Equations
7-8 M2 Lesson 7: Solving Multi-Step Equations
7-8 M5 Lesson 11: Surface Areas of Prisms and Pyramids
7-8 M5 Lesson 16: Volume of Prisms
7-8 M5 Lesson 18: Designing a Fish Tank
7-8 M5 Lesson 21: Volume of Composite Solids

Geometry

8.G.A Understand congruence and similarity using physical models, transparencies, or geometry software.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

8.G.A. 1

Verify experimentally the properties of rotations, reflections, and translations:

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.G.A.1.a	7-8 M3 Lesson 7: Motions of the Plane
Lines are transformed to lines, and line segments to line segments of the same length.	7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions
8.G.A.1.b Angles are transformed to angles of the same measure.	7-8 M3 Lesson 7: Motions of the Plane 7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions
8.G.A.1.C Parallel lines are transformed to parallel lines.	7-8 M3 Lesson 7: Motions of the Plane 7-8 M3 Lesson 8: Translations, Reflections, and Rotations 7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane 7-8 M3 Lesson 10: Sequencing the Rigid Motions
8.G.A. 2 Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations.	7-8 M3 Lesson 10: Sequencing the Rigid Motions 7-8 M3 Lesson 11: Showing Figures Are Congruent 7-8 M3 Lesson 12: Lines Cut by a Transversal

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

8.G.A. 3

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane
7-8 M3 Lesson 27: Similar Figures
7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
7-8 M3 Lesson 12: Lines Cut by a Transversal
7-8 M3 Lesson 13: Angle Sum of a Triangle
7-8 M3 Lesson 14: Exterior Angles of Triangles
7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths
7-8 M3 Lesson 9: Rigid Motions on the Coordinate Plane
7-8 M3 Lesson 22: Dilations
7-8 M3 Lesson 23: Using Lined Paper to Explore Dilations
7-8 M3 Lesson 24: Figures and Dilations
7-8 M3 Lesson 25: The Shadowy Hand
7-8 M3 Lesson 26: Dilations on the Coordinate Plane

8.G.A. 4

Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations.

8.G.A. 5

Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

[^0]
Geometry

8.G.B Understand and apply the Pythagorean Theorem.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

8.G.B.6	$7-8$ M1 Lesson 19: The Pythagorean Theorem
Analyze and justify the Pythagorean Theorem and its converse using pictures, diagrams, narratives, or models.	$7-8$ M3 Lesson 15: Proving the Pythagorean Theorem $7-8 ~ M 3 ~ L e s s o n ~ 16: ~ P r o v i n g ~ t h e ~ C o n v e r s e ~ o f ~ t h e ~ P y t h a g o r e a n ~ T h e o r e m ~$
8.G.B.7	$7-8$ M1 Lesson 19: The Pythagorean Theorem
Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	$7-8$ M3 Lesson 16: Proving the Converse of the Pythagorean Theorem $7-8 M 3$ Lesson 17: Applications of the Pythagorean Theorem $7-8 ~ M 3 ~ L e s s o n ~ 29: ~ U s i n g ~ S i m i l a r ~ F i g u r e s ~ t o ~ F i n d ~ U n k n o w n ~ S i d e ~ L e n g t h s ~$

Geometry

8.G.C Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
Idaho Mathematics Content
Standards
Aligned Components of Eureka Math ${ }^{2}$

8.G.C. 9

Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Statistics and Probability

7.SP.A Use random sampling to draw inferences about a population.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.SP.A. 1

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

7.SP.A. 2

Use data from a random sample about an unknown characteristic of a population. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions, i.e., generate a sampling distribution.

7-8 M6 Lesson 10: Populations and Samples
7-8 M6 Lesson 11: Selecting a Sample
7-8 M6 Lesson 12: Sampling Variability When Estimating a Population Mean

Statistics and Probability

7.SP.B Draw informal comparative inferences about two populations.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math²

7.SP.B. 3

Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities measuring the difference between the centers by expressing it as a multiple of a measure of variability.

7.SP.B. 4

7-8 M6 Topic D: Comparing Populations

Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.

Statistics and Probability

7.SP.C Investigate chance processes and develop, use, and evaluate probability models.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

7.SP.C. 5

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

7.SP.C. 6

Approximate the (theoretical) probability of a chance event by collecting data and observing its long-run relative frequency (experimental probability). Predict the approximate relative frequency given the (theoretical) probability.

7.SP.C. 7

Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.SP.C.7.a

Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.

7.SP.C.7.b

Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.

7.SP.C. 8	This standard is fully addressed by the lessons aligned to its subsections.

Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

7.SP.C.8.a

Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

7.SP.C.8.b

Represent sample spaces for compound events using methods such as organized lists, tables, and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

7.SP.C.8.c

Design and use a simulation to generate frequencies for compound events.

7-8 M6 Lesson 4: Multistage Experiments

7-8 M6 Lesson 8: Probability Simulations
7-8 M6 Lesson 9: Simulations with Random Number Tables

Statistics and Probability

8.SP.A Investigate patterns of association in bivariate data.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

8.SP.A. 1

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

```
7-8 M6 Lesson 18: Scatter Plots
7-8 M6 Lesson 19: Patterns in Scatter Plots
```


Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.SP.A. 2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

8.SP.A. 3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.

8.SP.A. 4

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.

7-8 M6 Lesson 20: Informally Fitting a Line to Data

7-8 M6 Lesson 21: Linear Models

7-8 M6 Lesson 20: Informally Fitting a Line to Data
7-8 M6 Lesson 21: Linear Models

7-8 M6 Topic F: Bivariate Categorical Data

Functions

8.F.A Define, evaluate, and compare functions.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

8.F.A. 1

Understand that a function is a rule that assigns to each input exactly one output and that the graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
8.F.A. 2

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)

8.F.A. 3

Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.

7-8 M5 Lesson 1: Motion and Speed
7-8 M5 Lesson 2: Definition of a Function
7-8 M5 Lesson 4: More Examples of Functions
7-8 M5 Lesson 5: Graphs of Functions and Equations

7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value
7-8 M5 Lesson 8: Comparing Functions

[^1]
Functions

8.F.B Use functions to model relationships between quantities.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

8.F.B. 4

Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

8.F.B. 5

Describe qualitatively the functional relationship between two quantities by analyzing and sketching a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

```
7-8 M5 Lesson 6: Linear Functions and Rate of Change
7-8 M5 Lesson 7: Interpreting Rate of Change and Initial Value
7-8 M5 Lesson 23: Applications of Volume
```

7-8 M5 Lesson 10: Graphs of Nonlinear Functions

[^0]: 7-8 M3 Lesson 12: Lines Cut by a Transversa
 7-8 M3 Lesson 13: Angle Sum of a Triangle
 M3 Lesson 14: Exterior Angles of Triangles
 7-8 M3 Lesson 28: Exploring Angles in Similar Triangles
 7-8 M3 Lesson 29: Using Similar Figures to Find Unknown Side Lengths

[^1]: 7-8 M5 Lesson 3: Linear Functions and Proportionality
 7-8 M5 Lesson 6: Linear Functions and Rate of Change
 7-8 M5 Lesson 10: Graphs of Nonlinear Functions

