Mathematics || Idaho Mathematics Content Standards Correlation to Eureka Math ${ }^{\text {2® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 @}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Math 1 | Idaho Mathematics Content Standards Correlation to Eureka Math ${ }^{2}$

Quantities

N.Q.A Reason quantitatively and use units to solve problems.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math²

N.Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

N.Q.A. 2

Define appropriate quantities for the purpose of descriptive modeling.
N.Q.A. 3

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Math 1 M1 Lesson 1: A Powerful Trio
Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 10: Designing a Fundraiser
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 M1 Lesson 1: A Powerful Trio
Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 11: A Vanishing Sea

Seeing Structure in Expressions

A.SSE.A Interpret the structure of linear, quadratic, exponential, polynomial, and rational expressions.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

| A.SSE.A.1 |
| :--- | :--- |
| Interpret expressions that represent |
| a quantity in terms of its context. |\quad This standard is fully addressed by the lessons aligned to its subsections.

Creating Equations

A.CED.A Create equations that describe numbers or relationships.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

A.CED.A. 1

Create one-variable equations and inequalities to solve problems, including linear, quadratic, rational, and exponential functions
A.CED.A. 2
Interpret the relationship between two
or more quantities.

Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
Supplemental material is necessary to address quadratic and rational functions for this standard

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M2 Lesson 12: Applications of Systems of Equations
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

A.CED.A.2.a

Define variables to represent the quantities and write equations to show the relationship.

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M2 Lesson 12: Applications of Systems of Equations
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.CED.A.2.b	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Use graphs to show a visual representation of the relationship while adhering to appropriate labels and scales.	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
	Math 1 M2 Lesson 4: Proving Conditional Statements
	Math 1 M2 Lesson 8: Low-Flow Showerhead
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
A.CED.A. 3 Represent constraints using equations or inequalities and interpret solutions as viable or non-viable options in a modeling context.	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
	Math 1 M1 Lesson 12: Solution Sets of Compound Statements
	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
	Math 1 M1 Lesson 16: Applying Absolute Value
	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	Math 1 M2 Lesson 15: Applications of Linear Inequalities
A.CED.A. 4 Represent constraints using systems of equations and/or inequalities and interpret solutions as viable or non-viable options in a modeling context.	Math 1 M1 Lesson 12: Solution Sets of Compound Statements
	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser
A.CED.A. 5 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	Math 1 M1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

A.REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify or refute a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

A.REI.B Solve equations and inequalities in one variable.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

```
Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
```


Reasoning with Equations and Inequalities
 A.REI.C Solve systems of equations.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

Abstract

\section*{A.REI.C. 5}

Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A.REI.C. 6

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Math 1 M2 Lesson 10: A New Way to Solve Systems

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Reasoning with Equations and Inequalities

A.REI.D Represent and solve equations and inequalities graphically.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.REI.D. 10

Demonstrate understanding that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. Show that any point on the graph of an equation in two variables is a solution to the equation.

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

Abstract

A.REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

A.REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
Math 1 M5 Lesson 19: Comparing Growth of Functions

Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

F.IF.A Understand the concept of a function and use function notation.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

F.IF.A. 1

Math 1 M3 Topic A: Functions and Their Graphs
Demonstrate understanding that a function is a correspondence from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range: If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

F.IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences
Math 1 M5 Topic A: Arithmetic and Geometric Sequences

F.IF.A. 3

Demonstrate that a sequence is a function, sometimes defined recursively, whose domain is a subset of the integers.

Interpreting Functions

F.IF.B Interpret functions that arise in applications in terms of the context. Include linear, quadratic, exponential, rational, polynomial, square root and cube root, trigonometric, and logarithmic functions.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maxima and minima; symmetries; end behavior; and periodicity.

F.IF.B. 5

Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.

F.IF.B. 6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Math 1 M3 Lesson 4: The Graph of a Function
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Math 1 M5 Lesson 17: Average Rate of Change

Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 19: Comparing Growth of Functions
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

F.IF.C Analyze functions using different representations.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.C. 7

Graph functions expressed symbolically and show key features of the graphs, by hand in simple cases and using technology for more complicated cases.

F.IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

This standard is addressed by the lessons aligned to its subsections.

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions

Supplemental material is necessary to address quadratic functions for this standard.
Math 1 M5 Lesson 8: Graphing Exponential Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Supplemental material is necessary to address logarithmic and trigonometric functions for this standard.

F.IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Building Functions

F.BF.A Build a function that models a relationship between two quantities.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.BF.A. 1

Write a function that describes a relationship between two quantities. Functions could include linear, exponential, quadratic, simple rational, radical, logarithmic, and trigonometric.
F.BF.A.1.a

Determine an explicit expression, a recursive process, or steps for calculation from a context.

Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 9: Solar System Models
Supplemental material is necessary to address quadratic, simple rational, radical, logarithmic, and trigonometric functions for this standard.

Math 1 M1 Lesson 2: Looking for Patterns
Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Math 1 M6 Lesson 8: The Deal
Combine standard function types using arithmetic operations.

F.BF.A. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to mode situations, and translate between the two forms.

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
Math 1 M6 Lesson 8: The Deal

Building Functions

F.BF.B Build new functions from existing functions.

Idaho Mathematics Content Standards

F.BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Include, linear, quadratic, exponential, absolute value, simple rational and radical, logarithmic, and trigonometric functions. Utilize technology to experiment with cases and illustrate an explanation of the effects on the graph. Include recognizing even and odd functions from their graphs and algebraic expressions for them. gebren

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M3 Topic D: Transformations of Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Supplemental material is necessary to address quadratic, simple rational and radical, logarithmic, and trigonometric functions for this standard.

Linear, Quadratic, and Exponential Models

F.LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Idaho Mathematics Content
 Standards
 Aligned Components of Eureka Math ${ }^{2}$

F.LE.A. 1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 20: World Population Prediction
	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
F.LE.A.1.a	Math 1 M5 Lesson 18: Analyzing Exponential Growth
Demonstrate that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
F.LE.A.1.b	Math 1 M5 Lesson 20: World Population Prediction
Identify situations in which one quantity changes at a constant rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations
F.LE.A.1.c	Math 1 M5 Lesson 20: World Population Prediction
Identify situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph a description of a relationship, or two input-output pairs (including reading these from a table).

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Math 1 M5 Lesson 19: Comparing Growth of Functions

Supplemental material is necessary to address quadratic and polynomial functions for this standard.

Use graphs and tables to demonstrate that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Linear, Quadratic, and Exponential Models

F.LE.B Interpret expressions for functions in terms of the situation they model.

Idaho Mathematics Content

Aligned Components of Eureka Math ${ }^{2}$

F.LE.B. 5

Interpret the parameters in a linear or exponential function (of the form $f(x)=b^{x}+k$) in terms of a context.

Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Congruence

G.CO.A Experiment with transformations in the plane.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

G.CO.A. 1

Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Math 1 M4 Lesson 1: Geometric Transformations

G.CO.A. 3

Describe the rotations and reflections that carry a given figure (rectangle, parallelogram, trapezoid, or regular polygon) onto itself.

G.CO.A. 4

Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry

Math 1 M4 Lesson 2: Translations of the Coordinate Plane

Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

G.CO.A. 4 continued	Math 1 M4 Lesson 9: Rotations of the Plane Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles Math 1 M4 Lesson 11: Translations of the Plane
G.CO.A. 5 Draw the transformation (rotation, reflection, or translation) for a given geometric figure.	Math 1 M4 Lesson 2: Translations of the Coordinate Plane Math 1 M4 Lesson 3: Rotations of the Coordinate Plane Math 1 M4 Lesson 4: Reflections of the Coordinate Plane Math 1 M4 Lesson 5: Proving the Perpendicular Criterion Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 15: Designs with Rigid Motions Math 1 M4 Lesson 16: Congruent Figures
G.CO.A. 6 Specify a sequence of transformations that will carry a given figure onto another.	Math 1 M4 Lesson 2: Translations of the Coordinate Plane Math 1 M4 Lesson 3: Rotations of the Coordinate Plane Math 1 M4 Lesson 4: Reflections of the Coordinate Plane Math 1 M4 Lesson 5: Proving the Perpendicular Criterion Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 15: Designs with Rigid Motions Math 1 M4 Lesson 16: Congruent Figures

Congruence

G.CO.B Understand congruence in terms of rigid motions.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

G.CO.B. 7

Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent

G.CO.B. 8

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

G.CO.B. 9

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures

Math 1 M4 Lesson 17: Congruent Triangles

Math 1 M4 Lesson 18: Side-Angle-Side

Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

G.CO.D Make geometric constructions.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

G.CO.D. 13

Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.) Constructions include: copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Math 1 M4 Lesson 7: Constructing Perpendicular Lines
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane
Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
Math 1 M4 Lesson 26: Sierpinski Triangle

Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 24: Squares Inscribed in Circles
Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Expressing Geometric Properties with Equations

G.GPE.B Use coordinates to prove simple geometric theorems algebraically.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

G.GPE.B. 4	Math 1 M2 Lesson 4: Proving Conditional Statements
Use coordinates to prove simple geometric theorems algebraically, including the distance formula and its relationship to the Pythagorean Theorem.	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 6: Proving the Parallel Criterion
	Math 1 M 2 Lesson 19: The Distance Formula
	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
G.GPE.B. 5	Math 1 M2 Lesson 6: Proving the Parallel Criterion
Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems.	Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
G.GPE.B. 7	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles (e.g., using the distance formula).	Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

S.ID.A Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math²

S.ID.A. 2	Math 1 M1 Lesson 17: Distributions and Their Shapes
Represent measurement data with	
plots on the real number line (dot plots,	
histograms, and box plots).	Math 1 M1 Lesson 18: Describing the Center of a Distribution
Math 1 M1 Lesson 19: Using Center to Compare Data Distributions	
Math 1 M6 Lesson 1: Using Data to Edit Digital Photography	
Compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different variables, using statistics appropriate	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
to the shape of the distribution for each	
measurement variable.	
S.ID.A.4 Interpret differences in shape, center, and spread in the context of the variables accounting for possible effects of extreme data points (outliers) for measurement variables.	

Interpreting Categorical and Quantitative Data

S.ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

S.ID.B. 6

Represent data on two categorical variables on a clustered bar chart and describe how the variables are related. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S.ID.B. 7

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

S.ID.B.7.a

Fit a linear function to data where a scatter plot suggests a linear relationship and use the fitted function to solve problems in the context of the data.

Math 1 M6 Topic B: Modeling with Categorical Data

Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

[^0]
Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

S.ID.B.7.b	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Use functions fitted to data, focusing on quadratic and exponential models, or choose a function suggested by the context. Utilize technology where appropriate.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea Supplemental material is necessary to address quadratic models for this standard.
S.ID.B.7.c	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Informally assess the fit of a function by plotting and analyzing residuals.	Math 1 M 2 Lesson 26: Analyzing Residuals
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters

Math 1 | Idaho Mathematics Content Standards Correlation to Eureka Math ${ }^{2}$

Interpreting Categorical and Quantitative Data

 S.ID.C Interpret linear models.
Idaho Mathematics Content
 Standards
 Aligned Components of Eureka Math ${ }^{2}$

S.ID.C. 8	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID.C. 9	Math 1 M2 Lesson 27: Interpreting Correlation
Compute (using technology) and interpret the linear correlation coefficient.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID.C. 10	Math 1 M2 Lesson 27: Interpreting Correlation
Distinguish between (linear) correlation and causation.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

[^0]: Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
 Math 1 M2 Lesson 24: Modeling Relationships with a Line
 Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
 Math 1 M2 Lesson 27: Interpreting Correlation
 Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
 Math 1 M6 Lesson 3: Analyzing Paint Platters
 Math 1 M6 Lesson 11: A Vanishing Sea

