Grade 9 | Idaho Mathematics Content Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Arithmetic with Polynomials and Rational Expressions

 A.APR.A Perform arithmetic operations on polynomials.Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.APR.A. 1

Demonstrate understanding that polynomials form a system analogous to the integers; namely, they are closed under certain operations.

A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Creating Equations

A.CED.A Create equations that describe numbers or relationships.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math²

A.CED.A. 1	A1 M1 Lesson 7: Printing Presses
Create one-variable equations and inequalities to solve problems, including linear, quadratic, rational, and exponential functions.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 Lesson 13: Solving Linear Inequalities in One Variable	
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities	
Interpret the relationship between two or more quantities.	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.CED.A.2.a

Define variables to represent the quantities and write equations to show the relationship.
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing AreaA1 M4 Lesson 26: Modeling Data with Quadratic FunctionsA1 M4 Lesson 27: Search and Rescue Helicopter

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter

A.CED.A.2.b

Use graphs to show a visual representation of the relationship while adhering to appropriate labels and scales.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.CED.A. 3

Represent constraints using equations or inequalities and interpret solutions as viable or non-viable options in a modeling context.

A.CED.A. 5

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M6 Lesson 5: Solar System Models

A1 M1 Lesson 12: Rearranging Formulas
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

A.REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify or refute a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

A.REI.B Solve equations and inequalities in one variable.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.B. 3
Solve linear equations and inequalities
in one variable, including equations with
coefficients represented by letters.
A.REI.B.4
Solve quadratic equations in one variable.
A.REI.B.4.a
Use the method of completing the square
to transform any quadratic equation in x
into an equation of the form $(x-p)^{2}=q$
that has the same solutions. Derive the
quadratic formula from this form.

```
A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M1 Lesson 16: Solving Absolute Value Equations
A1 M1 Lesson 17: Solving Absolute Value Inequalities
This standard is fully addressed by the lessons aligned to its subsections.
```

A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.B.4.b

Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

```
A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
```


Reasoning with Equations and Inequalities

A.REI.C Solve systems of equations.

Idaho Mathematics Content

 Standards
A.REI.C. 5

Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Aligned Components of Eureka Math ${ }^{2}$

A1 M2 Lesson 9: A New Way to Solve Systems

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
A1 M2 Lesson 9: A New Way to Solve Systems	
A.REI.C.7 M2 Lesson 10: The Elimination Method	
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	A1 M2 Lesson 11: Applications of Systems of Equations

Reasoning with Equations and Inequalities

A.REI.D Represent and solve equations and inequalities graphically.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.REI.D. 10

Demonstrate understanding that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. Show that any point on the graph of an equation in two variables is a solution to the equation.

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

A.REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
A1 M3 Lesson 10: Using Graphs to Solve Equations
A1 M3 Lesson 15: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities

Seeing Structure in Expressions

A.SSE.A Interpret the structure of linear, quadratic, exponential, polynomial, and rational expressions.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.

This standard is fully addressed by the lessons aligned to its subsections.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.SSE.A.1.a

Interpret parts of an expression, such as terms, factors, and coefficients.

A.SSE.A.1.b

Interpret complicated expressions by viewing one or more of their parts as a single entity.
ne

A.SSE.A. 2

Use the structure of an expression to identify ways to rewrite it.

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M1 Lesson 1: The Growing Pattern of Ducks
A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
A1 M1 Lesson 3: Polynomial Expressions
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Topic B: Factoring
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Seeing Structure in Expressions

A.SSE.B Write expressions in equivalent forms to solve problems.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

A.SSE.B. $\mathbf{3}$
Choose and produce an equivalent form
of an expression to reveal and explain
properties of the quantity represented
by the expression.

A.SSE.B.3.a

Factor a quadratic expression to reveal the zeros of the function it defines.

A.SSE.B.3.b

Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

A.SSE.B.3.C

Use the properties of exponents to transform expressions for exponential functions.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Building Functions

F.BF.A Build a function that models a relationship between two quantities.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.BF.A.1	
Write a function that describes a relationship between two quantities. Functions could include linear, exponential, quadratic, simple rational, radical, logarithmic, and trigonometric.	A1 M6 Lesson 5: Solar System Models
F.BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	A1 M3 Lesson 17: Piecewise Linear Functions in Context
	A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions	
A1 M4 Lesson 27: Search and Rescue Helicopter	
A1 M5 Topic A: Arithmetic and Geometric Sequences	
A1 M5 Lesson 8: Exponential Functions	
F.BF.A.1.b Combine standard function types using arithmetic operations.	A1 M5 Lesson 15: Calculating Interest

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.BF.A. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Building Functions

F.BF.B Build new functions from existing functions.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Include, linear, quadratic, exponential, absolute value, simple rational and radical, logarithmic, and trigonometric functions. Utilize technology to experiment with cases and illustrate an explanation of the effects on the graph. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Interpreting Functions

F.IF.A Understand the concept of a function and use function notation.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.A. 1

Demonstrate understanding that a function is a correspondence from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range: If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

F.IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1 M3 Topic A: Functions and Their Graphs

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.A. 3

Demonstrate that a sequence is a functions, sometimes defined recursively, whose domain is a subset of the integers.

A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

F.IF.B Interpret functions that arise in applications in terms of the context. Include linear, quadratic, exponential, rational, polynomial, square root and cube root, trigonometric, and logarithmic functions.

Idaho Mathematics Content Standards

F.IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maxima and minima; symmetries; end behavior; and periodicity.

Aligned Components of Eureka Math ${ }^{2}$

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.B.4 continued	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
F.IF.B.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 3: The Graph of a Function
	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion	
F.IF.B.6	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form	

Interpreting Functions

F.IF.C Analyze functions using different representations.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.C. 7

Graph functions expressed symbolically and show key features of the graphs, by hand in simple cases and using technology for more complicated cases.

This standard is fully addressed by the lessons aligned to its subsections.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
A1 M3 Lesson 6: Representations of Functions
A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

This standard is fully addressed by the lessons aligned to its subsections.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

F.IF.C.8.a

Use the process of factoring and/or completing the square in quadratic and polynomial functions, where appropriate, to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

F.IF.C.8.b

Use the properties of exponents to interpret expressions for exponential functions. Apply to financial situations such as identifying appreciation and depreciation rate for the value of a house or car sometime after its initial purchase.

F.IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions)

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Linear, Quadratic, and Exponential Models

F.LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

	A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population	
A1 M6 Topic A: Modeling Bivariate Quantitative Data	
F.LE.A.1.a Demonstrate that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	A1 M5 Lesson 19: Analyzing Exponential Growth
F.LE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Identify situations in which one quantity changes at a constant rate per unit interval relative to another.	A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction	

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

F.LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).

F.LE.A. 3

Use graphs and tables to demonstrate that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Topic B: Developing Models for Contexts

A1 M5 Lesson 20: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

F.LE.B Interpret expressions for functions in terms of the situation they model.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

F.LE.B. 5

Interpret the parameters in a linear or exponential function (of the form $f(x)=b^{x}+k$) in terms of a context.

[^0]
Quantities

N.Q.A Reason quantitatively and use units to solve problems.

Idaho Mathematics Content Standards
 Aligned Components of Eureka Math ${ }^{2}$

N.Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

N.Q.A.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
N.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

The Real Number System

N.RN.A Extend the properties of exponents to rational exponents.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

N.RN.A. 1
Explain how the definition of the
meaning of rational exponents follows
from extending the properties of integer
exponents to those values, allowing for
a notation for radicals in terms of rational
exponents.

N.RN.A. 2

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

The Real Number System

N.RN.B Use properties of rational and irrational numbers.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math ${ }^{2}$

N.RN.B. 3

Explain why the sum or product of two rational numbers is rational; why the sum of a rational number and an irrational number is irrational; and why the product of a nonzero rational number and an irrational number is irrational

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Interpreting Categorial and Quantitative Data

S.ID.A Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

Idaho Mathematics Content
 Standards

Aligned Components of Eureka Math²

S.ID.A. 2
Represent measurement data with plots
on the real number line (dot plots,
histograms, and box plots).

S.ID.A. 3

Compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different variables, using statistics appropriate to the shape of the distribution for each measurement variable.

S.ID.A. 4

Interpret differences in shape, center, and spread in the context of the variables accounting for possible effects of extreme data points (outliers) for measurement variables.

A1 M1 Lesson 18: Distributions and Their Shapes
A1 M1 Lesson 19: Describing the Center of a Distribution
A1 M1 Lesson 20: Using Center to Compare Data Distributions

A1 M1 Topic D: Univariate Data

A1 M1 Topic D: Univariate Data

Interpreting Categorial and Quantitative Data

S.ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

S.ID.B. 6

Represent data on two categorical variables on a clustered bar chart and describe how the variables are related. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S.ID.B. 7

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

S.ID.B.7.a

Fit a linear function to data where a scatter plot suggests a linear relationship and use the fitted function to solve problems in the context of the data.

A1 M2 Topic D: Categorical Data on Two Variables

A1 M2 Lesson 15: Relationships Between Quantitative Variables
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

```
A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 20: Interpreting Correlation
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Topic A: Modeling Bivariate Quantitative Data
```


Idaho Mathematics Content Standards

Aligned Components of Eureka Math ${ }^{2}$

S.ID.B.7.c

Informally assess the fit of a function by plotting and analyzing residuals.

A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 19: Analyzing Residuals
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorial and Quantitative Data

 S.ID.C Interpret linear models.
Idaho Mathematics Content

Standards

Aligned Components of Eureka Math ${ }^{2}$

S.ID.C.8 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data Lesson 16: Using Lines to Model Bivariate Quantitative Data	
S.ID.C.9 Compute (using technology) and interpret the linear correlation coefficient.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S.ID.C.10 Distinguish between (linear) correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

[^0]: A1 M5 Lesson 18: Modeling Populations
 A1 M5 Lesson 19: Analyzing Exponential Growth
 A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
 A1 M5 Lesson 24: Modeling an Invasive Species Population

