EUREKA MATH².

Grade 9 | Idaho Mathematics Content Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Arithmetic with Polynomials and Rational Expressions

A.APR.A Perform arithmetic operations on polynomials.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.APR.A.1	A1 M1 Lesson 3: Polynomial Expressions
Demonstrate understanding that polynomials form a system analogous to the integers; namely, they are closed under certain operations.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Creating Equations

A.CED.A Create equations that describe numbers or relationships.

Idaho Mathematics Content Aligned Components of *Eureka Math*²

A.CED.A.1	A1 M1 Lesson 7: Printing Presses
Create one-variable equations and inequalities to solve problems, including linear, quadratic, rational, and exponential functions.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A.CED.A.2	This standard is fully addressed by the lessons aligned to its subsections.
Interpret the relationship between two or more quantities.	

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
A.CED.A.2.a	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Define variables to represent the quantities and write equations to	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
show the relationship.	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
A.CED.A.2.b	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Use graphs to show a visual	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
representation of the relationship while adhering to appropriate labels and scales.	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter

Standards	Aligned Components of <i>Eureka Math</i> ²
A.CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints using equations or inequalities and interpret solutions as viable or non-viable options in a modeling context.	A1 M1 Lesson 14: Solution Sets of Compound Statements
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models
A.CED.A.5	A1 M1 Lesson 12: Rearranging Formulas
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

A.REI.A Understand solving equations as a process of reasoning and explain the reasoning.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
A.REI.A.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify or refute a solution method.	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

A.REI.B Solve equations and inequalities in one variable.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M1 Lesson 16: Solving Absolute Value Equations
A1 M1 Lesson 17: Solving Absolute Value Inequalities
This standard is fully addressed by the lessons aligned to its subsections.
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula

Standards	Aligned Components of <i>Eureka Math</i> ²
A.REI.B.4.b	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
Solve quadratic equations by inspection	A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
(e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic	A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
formula, and factoring, as appropriate	A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
to the initial form of the equation.	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M4 Lesson 16: Solving Quadratic Equations
	A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

A.REI.C Solve systems of equations.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
A.REI.C.5	A1 M2 Lesson 9: A New Way to Solve Systems
Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	

Standards	Aligned Components of <i>Eureka Math</i> ²
A.REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
A.REI.C.7	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a	
linear equation and a quadratic equation	
in two variables algebraically and graphically.	

A 11.

Reasoning with Equations and Inequalities

A.REI.D Represent and solve equations and inequalities graphically.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
A.REI.D.10	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Demonstrate understanding that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane. Show that any point on the graph of an equation in two variables is a solution to the equation.	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Standards	Aligned Components of Eureka Math ²
A.REI.D.11	A1 M3 Lesson 10: Using Graphs to Solve Equations
Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 24: Another Look at Systems of Equations A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
A.REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities A1 M6 Lesson 5: Solar System Models

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

Seeing Structure in Expressions

A.SSE.A Interpret the structure of linear, quadratic, exponential, polynomial, and rational expressions.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
A.SSE.A.1	This standard is fully addressed by the lessons aligned to its subsections.
Interpret expressions that represent a quantity in terms of its context.	

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

A.SSE.A.1.a	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
Interpret parts of an expression, such as terms, factors, and coefficients.	
A.SSE.A.1.b	A1 M5 Lesson 8: Exponential Functions
Interpret complicated expressions by	A1 M5 Lesson 16: Exponential Growth
viewing one or more of their parts as a single entity.	A1 M5 Lesson 17: Exponential Decay
single entity.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A.SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Use the structure of an expression	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
to identify ways to rewrite it.	A1 M1 Lesson 3: Polynomial Expressions
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Topic B: Factoring
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations

9 | Idaho Mathematics Content Standards Correlation to Eureka Math²

Seeing Structure in Expressions

A.SSE.B Write expressions in equivalent forms to solve problems.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
A.SSE.B.3	This standard is fully addressed by the lessons aligned to its subsections.
Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	
A.SSE.B.3.a	A1 M4 Lesson 10: Zeros of Functions
Factor a quadratic expression to reveal	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
the zeros of the function it defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A.SSE.B.3.b	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A.SSE.B.3.c	A1 M5 Lesson 11: Graphing Exponential Functions
Use the properties of exponents to	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
transform expressions for exponential functions.	A1 M5 Lesson 18: Modeling Populations

Building Functions

F.BF.A Build a function that models a relationship between two quantities.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²

F.BF.A.1 Write a function that describes a relationship between two quantities. Functions could include linear, exponential, quadratic, simple rational, radical, logarithmic, and trigonometric.	A1 M6 Lesson 5: Solar System Models
F.BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	A1 M3 Lesson 17: Piecewise Linear Functions in Context A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M5 Topic A: Arithmetic and Geometric Sequences A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 15: Calculating Interest A1 M6 Topic B: Developing Models for Contexts
F.BF.A.1.b Combine standard function types using arithmetic operations.	A1 M6 Lesson 4: The Deal A1 M6 Lesson 6: Designing a Fundraiser A1 M6 Lesson 7: World Record Doughnut

Standards	Aligned Components of <i>Eureka Math</i> ²
F.BF.A.2	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences A1 M5 Lesson 7: Sierpinski Triangle

Building Functions

F.BF.B Build new functions from existing functions.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
F.BF.B.3	A1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Include, linear, quadratic, exponential, absolute value, simple rational and radical, logarithmic, and trigonometric functions. Utilize technology to experiment with cases and illustrate an explanation of the effects on the graph. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	A1 M4 Lesson 20: Art with Transformations A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Interpreting Functions

F.IF.A Understand the concept of a function and use function notation.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
F.IF.A.1	A1 M3 Topic A: Functions and Their Graphs
Demonstrate understanding that a function is a correspondence from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range: If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	
F.IF.A.2	A1 M3 Lesson 1: The Definition of a Function
Use function notation, evaluate functions	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret statements that use function notation in terms of a context.	A1 M3 Lesson 6: Representations of Functions
	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle

Standards	
F.IF.A.3	A1 M5 Lesson 1: Exploring Patterns
Demonstrate that a sequence is a	A1 M5 Lesson 2: The Recursive Challenge
functions, sometimes defined recursively, whose domain is a subset of the integers.	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Aligned Components of Eureka Math²

Idaho Mathematics Content Standards

Interpreting Functions

F.IF.B Interpret functions that arise in applications in terms of the context. Include linear, quadratic, exponential, rational, polynomial, square root and cube root, trigonometric, and logarithmic functions.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²

F.IF.B.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
F.IF.B.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maxima and minima; symmetries; end behavior; and periodicity.	Al M3 Lesson 7: Exploring Key Features of a Function and its Graph A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph A1 M3 Lesson 9: Representing Functions from Verbal Descriptions A1 M3 Lesson 11: Comparing Functions A1 M3 Lesson 12: Mars Curiosity Rover A1 M3 Lesson 12: Mars Curiosity Rover A1 M3 Lesson 13: Modeling Elevation as a Function of Time A1 M4 Lesson 11: Falling Objects A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	Armin Lesson 21. completing the equale to ordph Quadratic runctions

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
F.IF.B.4 continued	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 25: Maximizing Area
F.IF.B.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 3: The Graph of a Function A1 M3 Lesson 13: Modeling Elevation as a Function of Time A1 M3 Lesson 16: Step Functions A1 M4 Lesson 2: Projectile Motion A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
F.IF.B.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 1: Falling Objects A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 20: Comparing Growth of Functions A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

F.IF.C Analyze functions using different representations.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
F.IF.C.7	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graphs, by hand in simple cases and using technology for more complicated cases.	

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
F.IF.C.7.a	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
show intercepts, maxima, and minima.	A1 M3 Lesson 6: Representations of Functions
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
F.IF.C.7.b	A1 M3 Topic C: Piecewise-Defined Linear Functions
Graph square root, cube root, and	A1 M3 Lesson 19: Building New Functions—Translations
piecewise-defined functions, including step functions and absolute value functions.	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
F.IF.C.7.e	A1 M5 Lesson 11: Graphing Exponential Functions
Graph exponential and logarithmic	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
F.IF.C.8	This standard is fully addressed by the lessons aligned to its subsections.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
F.IF.C.8.a Use the process of factoring and/or completing the square in quadratic and polynomial functions, where appropriate, to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
F.IF.C.8.b Use the properties of exponents to interpret expressions for exponential functions. Apply to financial situations such as identifying appreciation and depreciation rate for the value of a house or car sometime after its initial purchase.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
F.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	A1 M3 Lesson 11: Comparing Functions A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Linear, Quadratic, and Exponential Models

F.LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
F.LE.A.1	A1 M5 Lesson 15: Calculating Interest
Distinguish between situations that can	A1 M5 Lesson 18: Modeling Populations
be modeled with linear functions and with exponential functions.	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
F.LE.A.1.a	A1 M5 Lesson 19: Analyzing Exponential Growth
Demonstrate that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
F.LE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Identify situations in which one quantity	A1 M5 Lesson 18: Modeling Populations
changes at a constant rate per unit interval relative to another.	A1 M5 Lesson 21: World Population Prediction
interval relative to another.	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
F.LE.A.1.c	A1 M5 Lesson 15: Calculating Interest
Identify situations in which a quantity	A1 M5 Lesson 18: Modeling Populations
grows or decays by a constant percent	A1 M5 Lesson 21: World Population Prediction
rate per unit interval relative to another.	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
F.LE.A.2	A1 M5 Lesson 8: Exponential Functions
Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (including reading these from a table).	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Topic B: Developing Models for Contexts
F.LE.A.3 Use graphs and tables to demonstrate that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	A1 M5 Lesson 20: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

F.LE.B Interpret expressions for functions in terms of the situation they model.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
F.LE.B.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or exponential function (of the form $f(x) = b^x + k$) in terms of a context.	A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time A1 M5 Lesson 24: Modeling an Invasive Species Population

9 | Idaho Mathematics Content Standards Correlation to Eureka Math²

Quantities

N.Q.A Reason quantitatively and use units to solve problems.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²

N.Q.A.1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
N.Q.A.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
N.Q.A.3	A1 M6 Lesson 5: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	

The Real Number System

N.RN.A Extend the properties of exponents to rational exponents.

Idaho Mathematics Content Aligned Components of Eureka Math² Standards Aligned Components of Eureka Math²

N.RN.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	A1 M5 Lesson 10: Rational Exponents
N.RN.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

The Real Number System

N.RN.B Use properties of rational and irrational numbers.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
N.RN.B.3	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain why the sum or product of two rational numbers is rational; why the sum of a rational number and an irrational number is irrational; and why the product of a nonzero rational number and an irrational number is irrational.	A1 M4 Lesson 17: Rewriting Square Roots

9 | Idaho Mathematics Content Standards Correlation to Eureka Math²

Interpreting Categorial and Quantitative Data

S.ID.A Summarize, represent, and interpret data on a single count or measurement variable. Use calculators, spreadsheets, and other technology as appropriate.

Idaho Mathematics Content Standards

Aligned Components of Eureka Math²

S.ID.A.2 Represent measurement data with plots on the real number line (dot plots, histograms, and box plots).	A1 M1 Lesson 18: Distributions and Their Shapes A1 M1 Lesson 19: Describing the Center of a Distribution A1 M1 Lesson 20: Using Center to Compare Data Distributions
S.ID.A.3 Compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different variables, using statistics appropriate to the shape of the distribution for each measurement variable.	A1 M1 Topic D: Univariate Data
S.ID.A.4 Interpret differences in shape, center, and spread in the context of the variables accounting for possible effects of extreme data points (outliers) for measurement variables.	A1 M1 Topic D: Univariate Data

Interpreting Categorial and Quantitative Data

S.ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

Idaho Mathematics Content Standards	Aligned Components of <i>Eureka Math</i> ²
S.ID.B.6	A1 M2 Topic D: Categorical Data on Two Variables
Represent data on two categorical variables on a clustered bar chart and describe how the variables are related. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	
S.ID.B.7	A1 M2 Lesson 15: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S.ID.B.7.a	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Fit a linear function to data where	A1 M2 Lesson 17: Modeling Relationships with a Line
a scatter plot suggests a linear relationship and use the fitted function to solve problems in the context of the data.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	A1 M2 Lesson 20: Interpreting Correlation
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M6 Topic A: Modeling Bivariate Quantitative Data

Standards		Aligned Components of <i>Eureka Math</i> ²
S.ID.B.7.c		A1 M2 Lesson 18: Calculating and Analyzing Residuals
Informally assess the fit of a function by plotting and analyzing residuals.		A1 M2 Lesson 19: Analyzing Residuals
······································		A1 M6 Topic A: Modeling Bivariate Quantitative Data

Interpreting Categorial and Quantitative Data

S.ID.C Interpret linear models.

Idaho Mathematics Content Standards	Aligned Components of Eureka Math ²
S.ID.C.8	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S.ID.C.9	A1 M2 Lesson 20: Interpreting Correlation
Compute (using technology) and interpret the linear correlation coefficient.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
S.ID.C.10	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between (linear) correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data