EUREKA MATH².

Algebra $\frac{1}{2}$ The New Illinois Learning Standards for Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Algebra 1 | The New Illinois Learning Standards for Mathematics Correlation to Eureka Math²

Arithmetic with Polynomials and Rational Expressions

HSA-APR.A Perform arithmetic operations on polynomials.

The New Illinois Learning Standards for Mathematics

Aligned Components of Eureka Math²

HSA-APR.A.1	A1 M1 Lesson 3: Polynomial Expressions
Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities

Creating Equations

HSA-CED.A Create equations that describe numbers or relationships.

The New Illinois Learning Standards for Mathematics

HSA-CED.A.1	A1 M1 Lesson 7: Printing Presses
Create equations and inequalities in one variable and use them to solve problems.	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
HSA-CED.A.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
HSA-CED.A.2 Create equations in two or more	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities: graph equations on	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables A1 M2 Lesson 3: Creating Linear Equations in Two Variables
HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables A1 M2 Lesson 3: Creating Linear Equations in Two Variables A1 M2 Lesson 6: Applications of Linear Equations and Inequalities

The New Illinois Learning Standards for Mathematics	Aligned Components of Eureka Math ²
HSA-CED.A.2 continued	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
HSA-CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	A1 M1 Lesson 14: Solution Sets of Compound Statements
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models
HSA-CED.A.4	A1 M1 Lesson 12: Rearranging Formulas
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

HSA-REI.A Understand solving equations as a process of reasoning and explain the reasoning.

The New Illinois Learning Standards for Mathematics

Aligned Components of Eureka Math²

HSA-REI.A.1	A1 M1 Lesson 9: Solving Linear Equations in One Variable
Explain each step in solving a simple	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
equation as following from the equality of numbers asserted at the previous	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
step,starting from the assumption that	
the original equation has a solution.	
Construct a viable argument to justify	
a solution method.	

Reasoning with Equations and Inequalities HSA-REI.B Solve equations and inequalities in one variable.

The New Illinois Learning Standards for Mathematics

HSA-REI.B.3	A1 M1 Lesson 7: Printing Presses
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
	A1 M1 Lesson 9: Solving Linear Equations in One Variable
	A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M1 Lesson 16: Solving Absolute Value Equations
	A1 M1 Lesson 17: Solving Absolute Value Inequalities

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSA-REI.B.4 Solve auadratic equations in one variable.	This standard is fully addressed by the lessons aligned to its subsections.
HSA-REI.B.4.a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula
HSA-REI.B.4.b Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M4 Lesson 16: Solving Quadratic Equations

The New Illinois Learning Standards

Reasoning with Equations and Inequalities

HSA-REI.C Solve systems of equations.

The New Illinois Learning Standards for Mathematics

HSA-REI.C.5	A1 M2 Lesson 9: A New Way to Solve Systems
Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	
HSA-REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
	A1 M2 Lesson 9: A New Way to Solve Systems
	A1 M2 Lesson 10: The Elimination Method
	A1 M2 Lesson 11: Applications of Systems of Equations
HSA-REI.C.7	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

Reasoning with Equations and Inequalities

HSA-REI.D Represent and solve equations and inequalities graphically.

The New Illinois Learning Standards for Mathematics

HSA-REI.D.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
HSA-REI.D.11 Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	A1 M3 Lesson 10: Using Graphs to Solve Equations A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 24: Another Look at Systems of Equations A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) A1 M5 Lesson 20: Comparing Growth of Functions
HSA-REI.D.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

HSA-SSE.A Interpret the structure of expressions.

The New Illinois Learning Standards for Mathematics

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context.	This standard is fully addressed by the lessons aligned to its subsections.
HSA-SSE.A.1.a Interpret parts of an expression, such as terms, factors, and coefficients.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
HSA-SSE.A.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity.	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
HSA-SSE.A.2 Use the structure of an expression to identify ways to rewrite it.	A1 M1 Lesson 1: The Growing Pattern of Ducks A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties A1 M1 Lesson 3: Polynomial Expressions A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Topic B: Factoring A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Seeing Structure in Expressions

HSA-SSE.B Write expressions in equivalent forms to solve problems.

The New Illinois Learning Standards for Mathematics

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	This standard is fully addressed by the lessons aligned to its subsections.
HSA-SSE.B.3.a Factor a quadratic expression to reveal the zeros of the function it defines.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HSA-SSE.B.3.b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HSA-SSE.B.3.c Use the properties of exponents to transform expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Building Functions

HSF-BF.A Build a function that models a relationship between two quantities.

The New Illinois Learning Standards for Mathematics

HSF-BF.A.1 Write a function that describes a	A1 M6 Lesson 5: Solar System Models
relationship between two quantities.	
HSF-BF.A.1.a	A1 M3 Lesson 17: Piecewise Linear Functions in Context
Determine an explicit expression,	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
a recursive process, or steps for	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Topic A: Arithmetic and Geometric Sequences
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 15: Calculating Interest
	A1 M6 Topic B: Developing Models for Contexts
HSF-BF.A.1.b	A1 M6 Lesson 4: The Deal
Combine standard function types using arithmetic operations.	A1 M6 Lesson 6: Designing a Fundraiser
	A1 M6 Lesson 7: World Record Doughnut
HSF-BF.A.2	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Write arithmetic and geometric sequences both recursively and with	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
	A1 M5 Lesson 7: Sierpinski Triangle
situations, and translate between the	
two forms.	

Building Functions

HSF-BF.B Build new functions from existing functions.

The New Illinois Learning Standards for Mathematics

Aligned Components of Eureka Math²

HSF-BF.B.3	A1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of	A1 M4 Lesson 20: Art with Transformations
replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
positive and negative); find the value	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
of k given the graphs. Experiment with	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
cases and illustrate an explanation of the	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
effects on the graph using technology.	Arms Lesson 23. Modeling the temperature of objects cooling over time

Interpreting Functions

HSF-IF.A Understand the concept of a function and use function notation.

The New Illinois Learning Standards for Mathematics

HSF-IF.A.1	A1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	

for Mathematics	Aligned Components of Eurerd Math-
HSF-IF.A.2	A1 M3 Lesson 1: The Definition of a Function
Use function notation, evaluate functions	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret	A1 M3 Lesson 6: Representations of Functions
terms of a context.	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns
	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 7: Sierpinski Triangle
HSF-IF.A.3	A1 M5 Lesson 1: Exploring Patterns
Recognize that sequences are functions,	A1 M5 Lesson 2: The Recursive Challenge
sometimes defined recursively, whose domain is a subset of the integers.	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

The New Illinois Learning Standards

Interpreting Functions

HSF-IF.B Interpret functions that arise in applications in terms of the context.

The New Illinois Learning Standards for Mathematics

HSF-IF.B.4	A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
For a function that models a relationship	A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
between two quantities, interpret key	A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
of the quantities, and sketch graphs	A1 M3 Lesson 11: Comparing Functions
showing key features given a verbal	A1 M3 Lesson 12: Mars Curiosity Rover
description of the relationship.	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
	A1 M4 Lesson 1: Falling Objects
	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
HSF-IF.B.5	A1 M3 Lesson 3: The Graph of a Function
Relate the domain of a function to its	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
graph and, where applicable, to the	A1 M3 Lesson 16: Step Functions
quantitative relationship it describes.	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

for Mathematics	Aligned Components of Eureka Math ²
HSF-IF.B.6	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M5 Lesson 19: Analyzing Exponential Growth A1 M5 Lesson 20: Comparing Growth of Functions A1 M5 Lesson 24: Modeling an Invasive Species Population

The New Illineia Leavning Ctandards

Interpreting Functions HSF-IF.C Analyze functions using different representations.

The New Illinois Learning Standards Aligned Components of Eureka Math² for Mathematics This standard is fully addressed by the lessons aligned to its subsections. HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. HSF-IF.C.7.a A1 M3 Lesson 4: The Graph of the Equation y = f(x)Graph linear and quadratic functions and A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations show intercepts, maxima, and minima. A1 M3 Lesson 6: Representations of Functions A1 M4 Lesson 4: Graphs of Quadratic Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSF-IF.C.7.b	A1 M3 Topic C: Piecewise-Defined Linear Functions
Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	A1 M3 Lesson 19: Building New Functions—Translations
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
HSF-IF.C.7.e	A1 M5 Lesson 11: Graphing Exponential Functions
Graph exponential and logarithmic	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
HSF-IF.C.8	This standard is fully addressed by the lessons aligned to its subsections.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	
HSF-IF.C.8.a	A1 M4 Lesson 10: Zeros of Functions
Use the process of factoring and	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
HSF-IF.C.8.b	A1 M5 Lesson 11: Graphing Exponential Functions
Use the properties of exponents to	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
interpret expressions for exponential functions.	A1 M5 Lesson 18: Modeling Populations

The New Illinois Learning Standards

The New Illinois Learning Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSF-IF.C.9	A1 M3 Lesson 11: Comparing Functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

. .

Linear, Quadratic, and Exponential Models

HSF-LE.A Construct and compare linear, quadratic, and exponential models and solve problems.

The New Illinois Learning Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSF-LE.A.1	A1 M5 Lesson 15: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
HSF-LE.A.1.a	A1 M5 Lesson 19: Analyzing Exponential Growth
Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	

for Mathematics	Aligned Components of Eureka Math ²
F-LE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Recognize situations in which one	A1 M5 Lesson 18: Modeling Populations
quantity changes at a constant rate	A1 M5 Lesson 21: World Population Prediction
per unit interval relative to unother.	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
F-LE.A.1.c	A1 M5 Lesson 15: Calculating Interest
Recognize situations in which a quantity	A1 M5 Lesson 18: Modeling Populations
grows or decays by a constant percent	A1 M5 Lesson 21: World Population Prediction
rate per unit interval relative to another.	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
HSF-LE.A.2	A1 M5 Lesson 8: Exponential Functions
Construct linear and exponential	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Topic D: Comparing Linear and Exponential Models
	A1 M6 Topic B: Developing Models for Contexts
HSF-LE.A.3	A1 M5 Lesson 20: Comparing Growth of Functions
Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally)	

The New Illinois Learning Standards

Linear, Quadratic, and Exponential Models

HSF-LE.B Interpret expressions for functions in terms of the situation they model.

The New Illinois Learning Standards for Mathematics

Aligned Components of Eureka Math²

HSF-LE.B.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or exponential function in terms of a context.	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Quantities

HSN-Q.A Reason quantitatively and use units to solve problems.

The New Illinois Learning Standards for Mathematics

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	A1 M6 Lesson 5: Solar System Models
HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.	A1 M4 Lesson 25: Maximizing Area A1 M6 Lesson 5: Solar System Models
HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

The Real Number System

HSN-RN.A Extend the properties of exponents to rational exponents.

The New Illinois Learning Standards for Mathematics

Aligned Components of Eureka Math²

HSN-RN.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	A1 M5 Lesson 10: Rational Exponents
HSN-RN.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

The Real Number System

HSN-RN.B Use properties of rational and irrational numbers.

The New Illinois Learning Standards
for MathematicsAligned Components of Eureka Math2HSN-RN.B.3A1 M4 Lesson 13: Using Square Roots to Solve Quadratic EquationsExplain why the sum or product of two
rational numbers is rational; that the sum
of a rational number and an irrational
number is irrational; and that the product
of a nonzero rational number is irrational.A1 M4 Lesson 17: Rewriting Square Roots

Interpreting Categorical and Quantitative Data

HSS-ID.A Summarize, represent, and interpret data on a single count or measurement variable.

The New Illinois Learning Standards for Mathematics

-

HSS-ID.A.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).	A1 M1 Lesson 18: Distributions and Their Shapes A1 M1 Lesson 19: Describing the Center of a Distribution A1 M1 Lesson 20: Using Center to Compare Data Distributions
HSS-ID.A.2	A1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	
HSS-ID.A.3	A1 M1 Topic D: Univariate Data
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	

Interpreting Categorical and Quantitative Data

The New Illinois Learning Standards

HSS-ID.B Summarize, represent, and interpret data on two categorical and quantitative variables.

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSS-ID.B.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	A1 M2 Topic D: Categorical Data on Two Variables
HSS-ID.B.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
HSS-ID.B.6.a Fit a function to the data; use functions fitted to data to solve problems in the context of the data.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M6 Topic A: Modeling Bivariate Quantitative Data
HSS-ID.B.6.b Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 19: Analyzing Residuals A1 M6 Topic A: Modeling Bivariate Quantitative Data

for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HSS-ID.B.6.c	A1 M2 Lesson 17: Modeling Relationships with a Line
Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	A1 M2 Lesson 20: Interpreting Correlation
	A1 M6 Topic A: Modeling Bivariate Quantitative Data

1111 . . .

Interpreting Categorical and Quantitative Data

HSS-ID.C Interpret linear models.

The New Illinois Learning Standards for Mathematics

HSS-ID.C.7 A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data Interpret the slope (rate of change) and A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data the intercept (constant term) of a linear model in the context of the data. HSS-ID.C.8 A1 M2 Lesson 20: Interpreting Correlation Compute (using technology) and interpret A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data the correlation coefficient of a linear fit. HSS-ID.C.9 A1 M2 Lesson 20: Interpreting Correlation Distinguish between correlation and A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data causation.