Mathematics || Indiana Academic Standards for Mathematics Correlation to Eureka Math ${ }^{\text {® }}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used K -5 mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

PS. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 4 Model with mathematics.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 6 Attend to precision.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.
PS. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical processes. These are indicated in margin notes included with every lesson.

Data Analysis and Statistics

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.DS. 3	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Use technology to find a linear function that models a relationship between two quantitative variables to make predictions, and interpret the slope and y-intercept. Using technology, compute and interpret the correlation coefficient.	Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 25: Calculating and Analyzing Residuals Math 1 M2 Lesson 27: Interpreting Correlation 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data Math Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
AI.DS.4 Describe the differences between correlation and causation.	Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
AI.DS.5	

Summarize bivariate categorical data in two-way frequency tables. Interpret relative frequencies in the contexts of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in data.

Math 1 M6 Topic B: Modeling with Categorical Data

Functions

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

Abstract

\section*{AI.F. 1}

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. Understand that if f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. Understand the graph of f is the graph of the equation $y=f(x)$ with points of the form $(x, f(x))$.

Math 1 M3 Topic A: Functions and Their Graphs

Math 1 M3 Lesson 2: Interpreting and Using Function Notation

Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Math 1 M3 Lesson 1: The Definition of a Function
Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 4: The Graph of a Function
Supplemental material is necessary to address the term relation.

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.F. 4

Describe, qualitatively, the functional relationship between two quantities by analyzing key features of a graph. Sketch a graph that exhibits given key features of a function that has been verbally described, including intercepts, where the function is increasing or decreasing, where the function is positive or negative, and any relative maximum or minimum values, Identify the independent and dependent variables.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Linear Equations, Inequalities, and Functions

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.L. 1

Represent real-world problems using linear equations and inequalities in one variable, including those with rational number coefficients and variables on both sides of the equal sign. Solve them fluently, explaining the process used and justifying the choice of a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.L. 2

Solve compound linear inequalities in one variable, and represent and interpret the solution on a number line. Write a compound linear inequality given its number line representation.

AI.L. 3

Represent linear functions as graphs from equations (with and without technology), equations from graphs, and equations from tables and other given information (e.g., from a given point on a line and the slope of the line). Find the equation of a line, passing through a given point, that is parallel or perpendicular to a given line.

Al.L. 6

Represent real-world problems using linear inequalities in two variables and solve such problems; interpret the solution set and determine whether it is reasonable. Graph the solutions to a linear inequality in two variables as a half-plane.

AI.L. 7

Solve linear and quadratic equations and formulas for a specified variable to highlight a quantity of interest, using the same reasoning as in solving equations.

Systems of Linear Equations and Inequalities

Indiana Academic Standards

for Mathematics
Aligned Components of Eureka Math ${ }^{2}$

AI.SEI. 1

Understand the relationship between a solution of a system of two linear equations in two variables and the graphs of the corresponding lines. Solve pairs of linear equations in two variables by graphing; approximate solutions when the coordinates of the solution are non-integer numbers.

AI.SEI. 2

Verify that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions, including cases with no solution and infinitely many solutions. Solve systems of two linear equations algebraically using elimination and substitution methods.

AI.SEI. 3

Write a system of two linear equations in two variables that represents a real-world problem and solve the problem with and without technology. Interpret the solution and determine whether the solution is reasonable.

Math 1 M2 Lesson 9: Systems of Linear Equations in Two Variables
Math 1 M2 Lesson 12: Applications of Systems of Equations

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Math 1 M2 Lesson 8: Low-Flow Showerhead

Math 1 M2 Lesson 12: Applications of Systems of Equations

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.SEI. 4

Represent real-world problems using a system of two linear inequalities in two variables. Graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes with and without technology. Interpret the solution set and determine whether it is reasonable.

Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Quadratic and Exponential Equations and Functions

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math²

AI.QE. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions. Understand that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. Compare linear functions and exponential functions that model real-world situations using tables, graphs, and equations.

Math 1 M3 Lesson 11: Comparing Functions
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations
Math 1 M5 Lesson 23: Modeling an Invasive Species Population
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AI.QE.2	
Represent real-world and other mathematical problems that can be modeled with simple exponential functions using tables, graphs, and equations of the form $y=a b$ (for integer values of $x>1$, rational values of $b>0$ and $b \neq 1$) with and without technology; interpret the values of a and b.	Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs	
Math 1 M5 Lesson 14: Exponential Growth	
Math 1 M5 Lesson 15: Exponential Decay	
Math 1 M5 Topic D: Comparing Linear and Exponential Models 18: Analyzing Exponential Growth	
AI.QE.6 Graph exponential and quadratic functions with and without technology. Identify and describe key features, such as zeros, lines of symmetry, and extreme values in real-world and other mathematical problems involving quadratic functions with and without technology; interpret the results in the real-world contexts.	Math 1 M6 Lesson 3: Analyzing Paint Splatters

Data Analysis, Statistics, and Probability

Indiana Academic Standards

 for Mathematics
Aligned Components of Eureka Math²

All.DSP. 2

Interpret and compare univariate data using measures of center (mean and median) and spread (range, inter-quartile range, standard deviation, and variance). Understand the effects of outliers on the statistical summary of the data.

Math 1 M1 Topic D: Univariate Data

Functions

Indiana Academic Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

AII.F. 4

Explore and describe the effect on the graph of $f(x)$ by replacing $f(x)$ with $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative) with and without technology. Find the value of k given the graph of $f(x)$ and the graph of $f(x)+k, k f(x), f(k x)$, or $f(x+k)$.

Math 1 M3 Topic D: Transformations of Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Exponential and Logarithmic Equations and Functions

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

All.EL. 2

Identify the percent rate of change in exponential functions. Classify them as representing exponential growth or decay.

Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay

Polynomial, Rational, and Other Equations and Functions

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

AII.PR. 4

Solve absolute value linear equations and inequalities in one variable.

Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
Math 1 M1 Lesson 16: Applying Absolute Value

Logic and Proofs

Indiana Academic Standards for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

G.LP. 2
Use precise definitions for angle, circle,
perpendicular lines, parallel lines, and line
segment, based on the undefined notions
of point, line, and plane. Use standard
geometric notation.

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.LP. 3	Math 1 M2 Lesson 4: Proving Conditional Statements
State, use, and examine the validity of the converse, inverse, and contrapositive of conditional ("if-then") and biconditional ("if and only if") statements.	Math 1 M2 Lesson 5: Proving Biconditional Statements Supplemental material is necessary address the inverse and contrapositive of a conditional statement.
G.LP. 4	Math 1 M2 Lesson 4: Proving Conditional Statements
Understand that proof is the means used to demonstrate whether a statement is true or false mathematically. Develop geometric proofs, including those involving coordinate geometry, using two-column, paragraph, and flow chart formats.	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 6: Proving the Parallel Criterion
	Math 1 M2 Topic D: Algebraic Proofs of Geometric Theorems
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 18: Side-Angle-Side
	Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
	Math 1 M4 Lesson 20: Angle-Side-Angle
	Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Points, Lines, and Angles

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.PL. 2

Explore the relationships of the slopes of parallel and perpendicular lines. Determine if a pair of lines are parallel, perpendicular, or neither by comparing the slopes in coordinate graphs and equations.

G.PL. 3

Use tools to explain and justify the process to construct congruent segments and angles, angle bisectors, perpendicular bisectors, altitudes, medians, and parallel and perpendicular lines.

Math 1 M2 Lesson 6: Proving the Parallel Criterion
Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Math 1 M4 Lesson 7: Constructing Perpendicular Lines
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane
Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
Math 1 M4 Lesson 26: Sierpinski Triangle
Supplemental material is necessary to address altitudes and medians for this standard.
Math 1 M2 Lesson 19: The Distance Formula
Supplemental material is necessary to address midpoints for this standard.

Develop the distance formula using the Pythagorean Theorem. Find the lengths and midpoints of line segments in the two-dimensional coordinate system.

Triangles

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.T. 2

Explore and explain how the criteria for triangle congruence (ASA, SAS, AAS, SSS, and HL) follow from the definition of congruence in terms of rigid motions.

G.T. 3

Use tools to explain and justify the process to construct congruent triangles.

```
Math 1 M4 Lesson 18: Side-Angle-Side
Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg
Supplemental material is necessary to address AAS for this standard.
Math 1M4 Lesson 17: Congruent Triangles
Math 1 M4 Lesson 18: Side-Angle-Side
Math }1\mathrm{ M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg
Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
```


Quadrilaterals and Other Polygons

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math²

G.QP. 2

Prove that given quadrilaterals are parallelograms, rhombuses, rectangles, squares, kites, or trapezoids. Include coordinate proofs of quadrilaterals in the coordinate plane.

Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.QP. 4

Identify types of symmetry of polygons, including line, point, rotational, and self-congruences.

G.QP. 5

Compute perimeters and areas of polygons in the coordinate plane to solve real-world and other mathematical problems.

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Supplemental material is necessary to address self-congruences for this standard.

Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
Math 1 M6 Lesson 11: A Vanishing Sea

Transformations

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

G.TR. 1

Use geometric descriptions of rigid motions to transform figures and to predict and describe the results of translations, reflections and rotations on a given figure. Describe a motion or series of motions that will show two shapes are congruent.

Sequences and Series

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

PC.SS. 1

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

PC.SS. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula; use them to model situations and translate between the two forms.

Math 1 M5 Topic A: Arithmetic and Geometric Sequences

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences

Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
Math 1 M6 Lesson 8: The Deal

Numeracy

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math²

QR.N. 5

Perform accurate and efficient calculations using large and small numbers in different forms, to an appropriate precision, with and without technology. Include calculations in context, such as ratios representing water use per capita for a large population.

Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 | Indiana Academic Standards for Mathematics Correlation to Eureka Math ${ }^{2}$

Statistics

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math²

QR.S. 6

Summarize, represent, and interpret data sets on a single count or measurement variable using plots and statistics appropriate to the shape of the data distribution to represent it.

Math 1 M1 Topic D: Univariate Data
Math 1 M6 Lesson 1: Using Data to Edit Digital Photography

