Grade 6 | Indiana Academic Standards for Mathematics Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Mathematical Process Standards

PS. 1

Make sense of problems and persevere in solving them.

Aligned Components of Eureka Math ${ }^{2}$

6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 11: Applications of Ratio Reasoning
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M1 Lesson 25: Finding the Whole
6 M1 Lesson 26: Solving Percent Problems
6 M2 Lesson 7: Dividing a Fraction by a Whole Number
6 M2 Lesson 11: Applications of Fraction Division
6 M2 Lesson 23: Dividing a Decimal by a Decimal Less Than 1
6 M2 Lesson 24: Living on Mars
6 M3 Lesson 6: Ordering Rational Numbers
6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations
6 M3 Lesson 17: Problem Solving with the Coordinate Plane
6 M4 Lesson 6: Order of Operations
6 M4 Lesson 21: Solving Problems with Equations
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M6 Lesson 3: Creating a Dot Plot

Mathematical Process Standards

PS. 2

Reason abstractly and quantitatively.

Aligned Components of Eureka Math ${ }^{2}$

```
6 \text { M1 Lesson 2: Introduction to Ratios}
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 M1 Lesson 5: Equivalent Ratios
6 \text { M1 Lesson 7: Graphs of Ratio Relationships}
6 \text { M1 Lesson 16: Speed}
6 \text { M1 Lesson 17: Rates}
6 \text { M1 Lesson 18: Comparing Rates}
6 M2 Lesson 6: Dividing a Whole Number by a Fraction
6 M2 Lesson 12: Fraction Operations in a Real-World Situation
6 \text { M2 Lesson 20: Real-World Division Problems}
6 \text { M3 Lesson 1: Positive and Negative Numbers}
6 M3 Lesson 8: Absolute Value and Order
6 M4 Lesson 10: Multiplication and Division Expressions from Real-World Situations
6 \text { M4 Lesson 11: Modeling Real-World Situations with Expressions}
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 \text { M4 Lesson 17: Equations and Solutions}
6 M4 Lesson 18: Inequalities and Solutions
6 \text { M4 Lesson 24: Graphs of Non-Ratio Relationships}
6 M5 Lesson 4: Areas of Triangles in Real-World Situations
6 \text { M5 Lesson 19: Volume and Surface Area in Real-World Situations}
6 \text { M6 Lesson 2: Describing a Data Distribution}
6 M6 Lesson 4: Creating a Histogram
6 \text { M6 Lesson 7: Using the Mean to Describe the Center}
6 \text { M6 Lesson 8: The Mean as a Balance Point}
6 M6 Lesson 9: Variability in a Data Distribution
```


Mathematical Process Standards

PS. 3

Construct viable arguments and critique the reasoning of others.

Aligned Components of Eureka Math ${ }^{2}$

6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 14: Comparing Ratio Relationships, Part 2
6 M1 Lesson 24: Finding a Part
6 M2 Lesson 2: Divisibility
6 M2 Lesson 22: Dividing a Decimal by a Decimal Greater Than 1
6 M3 Lesson 3: Rational Numbers
6 M3 Lesson 5: Comparing Rational Numbers
6 M4 Lesson 3: Exploring Exponents
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 22: Relationship Between Two Variables
6 M5 Lesson 2: The Area of a Right Triangle
6 M5 Lesson 7: Areas of Trapezoids and Other Polygons
6 M5 Lesson 16: Applying Volume Formulas
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 M2 Lesson 16: Applications of Decimal Operations
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M4 Lesson 25: The Statue of Liberty
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M6 Lesson 17: Developing a Statistical Project
6 M6 Lesson 22: Presenting Statistical Projects

Mathematical Process Stanc	Aligned Components of Eureka Math²
PS. 5 Use appropriate tools strategically.	6 M1 Lesson 12: Multiple Ratio Relationships 6 M1 Lesson 23: Finding the Percent 6 M2 Lesson 13: Decimal Addition and Subtraction 6 M3 Lesson 13: Constructing the Coordinate Plane 6 M4 Lesson 23: Graphs of Ratio Relationships 6 M4 Lesson 25: The Statue of Liberty 6 M5 Lesson 18: Volumes of Composite Solids 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 6: Selecting a Data Display
$\text { PS. } 6$ Attend to precision.	6 M1 Lesson 3: Ratios and Tape Diagrams 6 M1 Lesson 15: The Value of the Ratio 6 M1 Lesson 19: Using Rates to Convert Units 6 M2 Lesson 4: The Least Common Multiple 6 M2 Lesson 15: Decimal Multiplication 6 M2 Lesson 19: Expressing Quotients as Decimals 6 M2 Lesson 21: Dividing a Decimal by a Whole Number 6 M3 Lesson 4: Rational Numbers in Real-World Situations 6 M3 Lesson 11: Plotting Points in the Coordinate Plane 6 M4 Lesson 1: Expressions with Addition and Subtraction 6 M4 Lesson 5: Exploring Order of Operations 6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division 6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations 6 M4 Lesson 20: Solving Equations with Multiplication and Division 6 M5 Lesson 9: Properties of Solids

Mathematical Process Standards

PS. 6 continued

PS. 7

Look for and make use of structure.

Aligned Components of Eureka Math ${ }^{2}$

6 M5 Lesson 10: Discovering Nets of Solids
6 M6 Lesson 1: Posing Statistical Questions
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 21: Comparing Measures of Variability
6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
6 M1 Lesson 13: Comparing Ratio Relationships, Part 1
6 M2 Lesson 3: The Greatest Common Factor
6 M2 Lesson 5: The Euclidean Algorithm
6 M2 Lesson 8: Dividing Fractions by Making Common Denominators
6 M2 Lesson 10: Dividing Fractions by Using the Invert and Multiply Strategy
6 M2 Lesson 18: The Standard Division Algorithm
6 M3 Lesson 2: Integers
6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
6 M3 Lesson 16: Figures in the Coordinate Plane
6 M4 Lesson 2: Expressions with Multiplication and Division
6 M4 Lesson 4: Evaluating Expressions with Exponents
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6 M4 Lesson 15: Combining Like Terms by Using the Distributive Property
6 M4 Lesson 19: Solving Equations with Addition and Subtraction
M
M

6 M5 Lesson 10: Discovering Nets of Solids
6 M6 Lesson 1: Posing Statistical Questions
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
6 M6 Lesson 21: Comparing Measures of Variability

6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
6 M1 Lesson 13: Comparing Ratio Relationships, Part 1
6 M2 Lesson 3: The Greatest Common Factor
6 M2 Lesson 5: The Euclidean Algorithm
6 M2 Lesson 8: Dividing Fractions by Making Common Denominators
6 M2 Lesson 10: Dividing Fractions by Using the Invert and Multiply Strategy
6 M2 Lesson 18: The Standard Division Algorithm
6 M3 Lesson 2: Integers
6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
6 M3 Lesson 16: Figures in the Coordinate Plane
6 M4 Lesson 2: Expressions with Multiplication and Division
6 M4 Lesson 4: Evaluating Expressions with Exponents
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

6 M4 Lesson 19: Solving Equations with Addition and Subtraction

Mathematical Process Standards

Aligned Components of Eureka Math ${ }^{2}$

PS. 7 continued	6 M5 Lesson 3: The Area of a Triangle 6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane 6 M5 Lesson 11: Constructing Nets of Solids 6 M5 Lesson 15: Exploring Volume 6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution 6 M6 Lesson 15: More Practice with Box Plots 6 M6 Lesson 16: Interpreting Box Plots 6 M6 Lesson 19: Comparing Data Distributions 6 M6 Lesson 20: Choosing a Measure of Center
PS. 8 Look for and express regularity in repeated reasoning.	6 M1 Lesson 4: Exploring Ratios by Making Batches 6 M1 Lesson 5: Equivalent Ratios 6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships 6 M1 Lesson 23: Finding the Percent 6 M2 Lesson 1: Factors and Multiples 6 M2 Lesson 9: Dividing Fractions by Using Tape Diagrams 6 M2 Lesson 14: Patterns in Multiplying Decimals 6 M2 Lesson 17: Partial Quotients 6 M3 Lesson 7: Absolute Value 6 M3 Lesson 12: Reflections in the Coordinate Plane 6 M3 Lesson 15: Distance in the Coordinate Plane 6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction 6 M5 Lesson 1: The Area of a Parallelogram 6 M5 Lesson 12: From Nets to Surface Area 6 M5 Lesson 17: Problem Solving with Volume 6 M6 Lesson 10: The Mean Absolute Deviation

Number Sense

Students begin to apply negative integers within real-world contexts and use number lines to model opposite signed numbers as located on opposite sides of zero.

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.NS. 1

6 M3 Lesson 1: Positive and Negative Numbers
Use positive and negative numbers to represent and compare quantities in real-world contexts, explaining the meaning of 0 in each situation. (E)

6.NS. 2

Explain how opposite signs of numbers indicate locations on opposite sides of 0 on the number line; identify the opposite of the opposite of a number.

6.NS. 3

Compare and order rational numbers and plot them on a number line. Write, interpret, and explain statements of order for rational numbers in real-world contexts.

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math²

6.NS. 4

Solve real-world problems with positive fractions and decimals by using one or two operations. (E)

```
6 \text { M2 Lesson 6: Dividing a Whole Number by a Fraction}
6 \text { M2 Lesson 7: Dividing a Fraction by a Whole Number}
6 \text { M2 Lesson 8: Dividing Fractions by Making Common Denominators}
6 \text { M2 Lesson 9: Dividing Fractions by Using Tape Diagrams}
6 M2 Lesson 10: Dividing Fractions by Using the Invert and Multiply Strategy
6 \text { M2 Lesson 11: Applications of Fraction Division}
6 \text { M2 Lesson 12: Fraction Operations in a Real-World Situation}
6 M2 Lesson 13: Decimal Addition and Subtraction
6 \text { M2 Lesson 14: Patterns in Multiplying Decimals}
6 \text { M2 Lesson 15: Decimal Multiplication}
6 \text { M2 Lesson 16: Applications of Decimal Operations}
6 \text { M2 Lesson 17: Partial Quotients}
6 \text { M2 Lesson 18: The Standard Division Algorithm}
6 \text { M2 Lesson 19: Expressing Quotients as Decimals}
6 M2 Lesson 20: Real-World Division Problems
6 \text { M2 Lesson 21: Dividing a Decimal by a Whole Number}
6 \text { M2 Lesson 22: Dividing a Decimal by a Decimal Greater Than 1}
6 M2 Lesson 23: Dividing a Decimal by a Decimal Less Than 1
6 M2 Lesson 24: Living on Mars
```


Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.NS. 5

Apply the order of operations and properties of operations (i.e., identity, inverse, commutative properties of addition and multiplication, associative properties of addition and multiplication, and distributive property) to evaluate numerical expressions with nonnegative rational numbers, including those using grouping symbols, such as parentheses, and involving whole number exponents. (E)

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 17: Equations and Solutions
6 M5 Lesson 1: The Area of a Parallelogram
6 M5 Lesson 3: The Area of a Triangle
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M5 Lesson 16: Applying Volume Formulas
6 M2 Lesson 1: Factors and Multiples
6 M2 Lesson 2: Divisibility
6 M2 Lesson 3: The Greatest Common Factor
6 M2 Lesson 4: The Least Common Multiple
6 M2 Lesson 5: The Euclidean Algorithm
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.NS. 7

Apply the properties of operations (i.e., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions and to justify whether two linear expressions are equivalent when the two expressions name the same number regardless of which value is substituted into them. (E)
?

6.NS. 8

Evaluate positive rational numbers with whole number exponents.

6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 13: The Distributive Property
6 M4 Lesson 14: Using the Distributive Property to Factor Expressions
6 M4 Lesson 15: Combining Like Terms by Using the Distributive Property
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 M5 Lesson 4: Areas of Triangles in Real-World Situations
6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
6 M5 Lesson 7: Area of Trapezoids and Other Polygons
6 M5 Lesson 12: From Nets to Surface Area
6 M5 Lesson 17: Problem Solving with Volume
6 M4 Lesson 1: Expressions with Addition and Subtraction
6 M4 Lesson 2: Expressions with Multiplication and Division
6 M4 Lesson 3: Exploring Exponents
6 M4 Lesson 4: Evaluating Expressions with Exponents
6 M4 Lesson 5: Exploring Order of Operations
6 M4 Lesson 6: Order of Operations

Ratios and Proportional Reasoning

Students use ratios and reasoning to compare two quantities and understand unit rate. Students use ratios and unit rates to model and solve real-world problems.

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.RP. 1
Convert between any two representations
(fractions, decimals, percents) of positive
rational numbers without the use of a
calculator. (E)
calculator. (E)

6.RP. 2

Understand the concept of a unit rate and use terms related to rate in the context of a ratio relationship.

6 M1 Lesson 22: Introduction to Percents

```
6 M1 Lesson 2: Introduction to Ratios
6 \text { M1 Lesson 3: Ratios and Tape Diagrams}
6 \text { M1 Lesson 4: Exploring Ratios by Making Batches}
6 M1 Lesson 5: Equivalent Ratios
6 \text { M1 Lesson 8: Addition Patterns in Ratio Relationships}
6 \text { M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships}
6 ~ M 1 ~ L e s s o n ~ 1 1 : ~ A p p l i c a t i o n s ~ o f ~ R a t i o ~ R e a s o n i n g ~
6 \text { M1 Lesson 15: The Value of the Ratio}
6 \text { M1 Lesson 16: Speed}
6 \text { M1 Lesson 17: Rates}
6 \text { M1 Lesson 18: Comparing Rates}
6 ~ M 1 ~ L e s s o n ~ 1 9 : ~ U s i n g ~ R a t e s ~ t o ~ C o n v e r t ~ U n i t s ~
6 \text { M1 Lesson 20: Solving Rate Problems}
```


Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.RP. 3

Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane.

6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 7: Graphs of Ratio Relationships
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships
6 M1 Lesson 11: Applications of Ratio Reasoning
6 M1 Lesson 12: Multiple Ratio Relationships
6 M1 Lesson 13: Comparing Ratio Relationships, Part 1
6 M1 Lesson 14: Comparing Ratio Relationships, Part 2
6 M1 Lesson 15: The Value of the Ratio
6 M1 Lesson 16: Speed
6 M1 Lesson 18: Comparing Rates
6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 M1 Lesson 5: Equivalent Ratios
6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships
6 M1 Lesson 11: Applications of Ratio Reasoning
6 M1 Lesson 16: Speed
6 M1 Lesson 17: Rates

Indiana Academic Standards
for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.RP. 4 continued

6 M1 Lesson 18: Comparing Rates
6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M4 Lesson 22: Relationship Between Two Variables
6 M4 Lesson 23: Graphs of Ratio Relationships
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 13: Surface Area in Real-World Situations
6 M4 Lesson 22: Relationship Between Two Variables
6 M4 Lesson 23: Graphs of Ratio Relationships
6 M4 Lesson 24: Graphs of Non-Ratio Relationships
6 M4 Lesson 25: The Statue of Liberty

6 M1 Lesson 18: Comparing Rates
6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M4 Lesson 22: Relationship Between Two Variables
6 M4 Lesson 23: Graphs of Ratio Relationships
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 13: Surface Area in Real-World Situations

6.RP. 5

Use variables to represent two quantities in a proportional relationship in a real-world problem; write an equation to express one quantity, the dependent variable, in terms of the other quantity, the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (E)

Algebra and Functions

Students evaluate algebraic expressions, write algebraic expressions to represent quantities in context, and create
equivalent algebraic expressions. equivalent algebraic expressions.

Indiana Academic Standards for Mathematics
\section*{Aligned Components of Eureka Math ${ }^{2}$}

$6 . A F .1$

Define and use multiple variables when writing expressions to represent real-world and other mathematical problems, and evaluate them for given values. (E)

6.AF. 2

Demonstrate which values from a specified set, if any, make the equation or inequality true. Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (E)

6 M4 Lesson 7: Algebraic Expressions with Addition and Subtraction
6 M4 Lesson 8: Algebraic Expressions with Addition, Subtraction, Multiplication, and Division
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions

6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 10: Multiplication and Division Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 M4 Lesson 17: Equations and Solutions
6 M4 Lesson 18: Inequalities and Solutions
6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 20: Solving Equations with Multiplication and Division

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.AF. 3

Solve equations of the form $x+p=q$, $x-p=q, p x=q$, and $\frac{x}{p}=q$ fluently for cases in which p, q and x are all nonnegative rational numbers. Represent real-world problems using equations of these forms and solve such problems. (E)

6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 10: Multiplication and Division Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 16: Equivalent Algebraic Expressions
6 M4 Lesson 17: Equations and Solutions
6 M4 Lesson 19: Solving Equations with Addition and Subtraction
6 M4 Lesson 20: Solving Equations with Multiplication and Division
6 M4 Lesson 21: Solving Problems with Equations
6 M5 Lesson 2: The Area of a Right Triangle

6 M4 Lesson 18: Inequalities and Solutions

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math²

6.AF. 5

Solve real-world and other mathematical problems by graphing points with rational number coordinates on a coordinate plane. Include the use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. (E)
6 M3 Lesson 3: Rational Numbers6 M3 Lesson 10: The Four Quadrants of the Coordinate Plane
6 M3 Lesson 11: Plotting Points in the Coordinate Plane
6 M3 Lesson 12: Reflections in the Coordinate Plane
6 M3 Lesson 13: Constructing the Coordinate Plane
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M3 Lesson 15: Distance in the Coordinate Plane
6 M3 Lesson 16: Figures in the Coordinate Plane
6 M3 Lesson 17: Problem Solving with the Coordinate Plane
6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane

Geometry and Measurement

Students find areas of complex shapes and find volumes of rectangular prisms.

Indiana Academic Standards
 for Mathematics
 Aligned Components of Eureka Math ${ }^{2}$

6.GM. 1

Convert between measurement systems (Customary to metric and metric to Customary) given the conversion factors, and use these conversions in solving real-world problems.

6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math²

6.GM. 2	7 M4 Lesson 1: Sketching, Drawing, and Constructing Geometric Figures
Apply the sums of interior angles of triangles and quadrilaterals to solve real-world and mathematical problems.	7 M4 Lesson 2: Constructing Parallelograms and Other Quadrilaterals
	7 M4 Lesson 3: Side Lengths of a Triangle
	7 M4 Lesson 4: Angles of a Triangle
	7 M4 Lesson 5: Constructing Quadrilaterals and Triangles
	7 M4 Lesson 6: Unique Triangles
	7 M4 Lesson 7: Two Angles and One Side
	7 M4 Lesson 8: Two Sides and One Angle
	7 M4 Lesson 9: Constructing a Circle
6.GM. 3	6 M5 Lesson 1: The Area of a Parallelogram
Find the area of complex shapes composed of polygons by composing or decomposing into simple shapes; apply this technique to solve real-world and other mathematical problems.	6 M5 Lesson 2: The Area of a Right Triangle
	6 M5 Lesson 3: The Area of a Triangle
	6 M5 Lesson 4: Areas of Triangles in Real-World Situations
	6 M5 Lesson 5: Perimeter and Area in the Coordinate Plane
	6 M5 Lesson 6: Problem Solving with Area in the Coordinate Plane
	6 M5 Lesson 7: Area of Trapezoids and Other Polygons
	6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations

Indiana Academic Standards
 for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.GM. 4

Find the volume of a right rectangular prism with fractional edge lengths using unit cubes of the appropriate unit fraction edge lengths (e.g., using technology or concrete materials) and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=B h$ to find volumes of right rectangular prisms with fractional edge lengths to solve real-world and other mathematical problems. (E)

6 M5 Lesson 15: Exploring Volume
6 M5 Lesson 16: Applying Volume Formulas
6 M5 Lesson 17: Problem Solving with Volume
6 M5 Lesson 18: Volumes of Composite Solids
6 M5 Lesson 19: Volume and Surface Area in Real-World Situations

Data Analysis and Statistics

Students represent data using line plots, histograms, and box plots.

Indiana Academic Standards

for Mathematics

Aligned Components of Eureka Math ${ }^{2}$

6.DS. 1

Select, create, and interpret graphical representations of numerical data, including line plots, histograms, and box plots.

6 M6 Lesson 3: Creating a Dot Plot
6 M6 Lesson 4: Creating a Histogram
6 M6 Lesson 5: Comparing Data Displays
6 M6 Lesson 6: Selecting a Data Display
6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
6 M6 Lesson 15: More Practice with Box Plots
6 M6 Lesson 16: Interpreting Box Plots
6 M6 Lesson 19: Comparing Data Distributions
6 M6 Lesson 22: Presenting Statistical Projects

6 M6 Lesson 1: Posing Statistical Questions
6 M6 Lesson 2: Describing a Data Distribution
6 M6 Lesson 3: Creating a Dot Plot
6 M6 Lesson 4: Creating a Histogram
6 M6 Lesson 6: Selecting a Data Display
6 M6 Lesson 7: Using the Mean to Describe the Center
6 M6 Lesson 8: The Mean as a Balance Point
6 M6 Lesson 9: Variability in a Data Distribution
6 M6 Lesson 10: The Mean Absolute Deviation
6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
6 M6 Lesson 12: Using the Median to Describe the Center
6 M6 Lesson 13: Using the Interquartile Range to Describe Variability

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math²

6.DS. 2 continued	6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution 6 M6 Lesson 15: More Practice with Box Plots 6 M6 Lesson 16: Interpreting Box Plots 6 M6 Lesson 17: Developing a Statistical Project 6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures 6 M6 Lesson 19: Comparing Data Distributions 6 M6 Lesson 22: Presenting Statistical Projects
6.DS. 3 Summarize numerical data sets in relation to their context in multiple ways, such as: (E)	This standard is fully addressed by the lessons aligned to its subsections.
6.DS.3.a Report the number of observations;	6 M6 Lesson 2: Describing a Data Distribution
6.DS.3.b Describe the nature of the attribute under investigation, including how it was measured and its units of measurement;	6 M6 Lesson 1: Posing Statistical Questions 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 17: Developing a Statistical Project 6 M6 Lesson 21: Comparing Measures of Variability

Indiana Academic Standards for Mathematics

Aligned Components of Eureka Math²

6.DS.3.C	6 M6 Lesson 7: Using the Mean to Describe the Center
Determine quantitative measures of center (mean and/or median) and spread (range and interquartile range);	6 M6 Lesson 8: The Mean as a Balance Point
	6 M6 Lesson 10: The Mean Absolute Deviation
	6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
	6 M6 Lesson 12: Using the Median to Describe the Center
	6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
	6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M6 Lesson 21: Comparing Measures of Variability
6.DS.3.d	6 M6 Lesson 7: Using the Mean to Describe the Center
Describe any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered; and	6 M6 Lesson 8: The Mean as a Balance Point
	6 M6 Lesson 10: The Mean Absolute Deviation
	6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation
	6 M6 Lesson 12: Using the Median to Describe the Center
	6 M6 Lesson 13: Using the Interquartile Range to Describe Variability
	6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M6 Lesson 21: Comparing Measures of Variability
6.DS.3.e	6 M6 Lesson 20: Choosing a Measure of Center
Relate the choice of measures of center and spread to the shape of the data distribution and the context in which the data were gathered.	6 M6 Lesson 21: Comparing Measures of Variability

Integrated STEM

Communication and Collaboration

Indiana Academic Standards:
 Integrated STEM
 Aligned Components of Eureka Math²

6.CC. 1

Collect and document evidence to share information with others in multiple media forms.

```
6 M1 Lesson 4: Exploring Ratios by Making Batches
6 \text { M1 Lesson 7: Graphs of Ratio Relationships}
6 M1 Lesson 12: Multiple Ratio Relationships
6 ~ M 1 ~ L e s s o n ~ 1 8 : ~ C o m p a r i n g ~ R a t e s
6 M1 Lesson 22: Solving Percent Problems
6 M2 Lesson 1: Factors and Multiples
6 M2 Lesson 6: Dividing a Whole Number by a Fraction
6 \text { M2 Lesson 12: Fraction Operations in a Real-World Situation}
6 ~ M 2 ~ L e s s o n ~ 1 4 : ~ A p p l i c a t i o n s ~ o f ~ D e c i m a l ~ O p e r a t i o n s
6 \text { M2 Lesson 17: Partial Quotients}
6 \text { M2 Lesson 24: Living on Mars}
6 M3 Lesson 2: Integers
6 M3 Lesson 7: Absolute Value
6 M3 Lesson 12: Reflections in the Coordinate Plane
6 M3 Lesson 15: Distance in the Coordinate Plane
6 \text { M4 Lesson 3: Exploring Exponents}
6 ~ M 4 ~ L e s s o n ~ 1 1 : ~ M o d e l i n g ~ R e a l - W o r l d ~ S i t u a t i o n s ~ w i t h ~ E x p r e s s i o n s
6 M4 Lesson 15: Combining Like Terms by Using the Distributive Property
6 \text { M4 Lesson 23: Graphs of Ratio Relationships}
6 \text { M5 Lesson 1: The Area of a Parallelogram}
6 \text { M5 Lesson 7: Areas of Trapezoids and Other Polygons}
6 \text { M5 Lesson 9: Properties of Solids}
6 \text { M5 Lesson 15: Exploring Volume}
```

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.CC. 1 continued

6 M6 Lesson 4: Creating a Histogram
6 M6 Lesson 8: The Mean as a Balance Point
6 M6 Lesson 15: More Practice with Box Plots
6 M6 Lesson 20: Choosing a Measure of Center

6.CC. 2

Communicate the solution(s) of a problem/analysis either orally, visually, or in writing, including process steps, findings, or conclusions.

Lessons in every module engage students in communicating solutions in various ways; the following list of lessons is for module 1 only and should not be considered exhaustive.

6 M1 Lesson 1: Jar of Jelly Beans
6 M1 Lesson 2: Introduction to Ratios
6 M1 Lesson 3: Ratios and Tape Diagrams
6 M1 Lesson 5: Equivalent Ratios
6 M1 Lesson 6: Ratio Tables and Double Number Lines
6 M1 Lesson 8: Addition Patterns in Ratio Relationships
6 M1 Lesson 9: Multiplication Patterns in Ratio Relationships
6 M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships
6 M1 Lesson 11: Applications of Ratio Reasoning
6 M1 Lesson 13: Comparing Ratio Relationships, Part 1
6 M1 Lesson 14: Comparing Ratio Relationships, Part 2
6 M1 Lesson 15: The Value of the Ratio
6 M1 Lesson 16: Speed
6 M1 Lesson 17: Rates
6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M1 Lesson 22: Introduction to Percents

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.CC. 2 continued	6 M1 Lesson 23: Finding the Percent 6 M1 Lesson 24: Finding a Part 6 M1 Lesson 25: Finding the Whole 6 M1 Lesson 26: Solving Percent Problems
6.CC. 3 Identify, implement, and assign roles and responsibilities to collaborate in various group settings (i.e., online, onsite and/or hybrid) and situations.	6 M1 Lesson 20: Solving Rate Problems 6 M2 Lesson 2: Divisibility 6 M3 Lesson 17: Problem Solving with the Coordinate Plane 6 M4 Lesson 19: Solving Equations with Addition and Subtraction 6 M5 Lesson 4: Areas of Triangles in Real-World Situations 6 M5 Lesson 14: Designing a Box 6 M5 Lesson 16: Applying Volume Formulas 6 M6 Lesson 10: The Mean Absolute Deviation 6 M6 Lesson 16: Interpreting Box Plots
6.CC. 4 Communicate specific constraints and criteria established for an investigation.	6 M1 Lesson 1: Jar of Jelly Beans 6 M1 Lesson 21: Solving Multi-Step Rate Problems 6 M1 Lesson 26: Solving Percent Problems 6 M2 Lesson 16: Applications of Decimal Operations 6 M3 Lesson 14: Modeling with the Coordinate Plane 6 M4 Lesson 25: The Statue of Liberty 6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations 6 M5 Lesson 14: Designing a Box 6 M6 Lesson 17: Developing a Statistical Project 6 M6 Lesson 22: Presenting Statistical Projects

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.CC. 5

Evaluate competing solutions or arguments in a systematic way based on qualitative and/or quantitative evidence.

```
6 \text { M1 Lesson 1: Jars of Jelly Beans}
6 \text { M1 Lesson 2: Introduction to Ratios}
6 \text { M1 Lesson 3: Ratios and Tape Diagrams}
6 \text { M1 Lesson 11: Applications of Ratio Reasoning}
6 M1 Lesson 13: Comparing Ratio Relationships, Part }
6 ~ M 1 ~ L e s s o n ~ 1 4 : ~ C o m p a r i n g ~ R a t i o ~ R e l a t i o n s h i p s , ~ P a r t ~ 2 ~
6 ~ M 1 ~ L e s s o n ~ 1 7 : ~ R a t e s
6 \text { M1 Lesson 20: Solving Rate Problems}
6 M1 Lesson 24: Finding a Part
6 \text { M2 Lesson 10: Dividing Fractions by Using the Invert and Multiply Strategy}
6 M2 Lesson 22: Dividing a Decimal by a Decimal Less Than 1
6 M3 Lesson 3: Rational Numbers
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M3 Lesson 17: Problem Solving with the Coordinate Plane
6 \text { M4 Lesson 6: Order of Operations}
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 \text { M4 Lesson 22: Graphs of Ratio Relationships}
6 M5 Lesson 2: The Area of a Right Triangle
6 M6 Lesson 1: Posing Statistical Questions
6 M6 Lesson 6: Selecting a Data Display
6 \text { M6 Lesson 11: Using the Mean and Mean Absolute Deviation}
6 M6 Lesson 12: Using the Mean to Describe the Center
```


Integrated STEM

Data Analysis and Measurement

Indiana Academic Standards:
 Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.DM. 1

Use multiple systems of measurement (i.e., standard and metric) and data sets (e.g., plots, tables, graphs, charts) defined in grade level content standards to analyze real-world scenarios and the mathematical relationships represented by the data.

```
6 M1 Lesson 1: Jars of Jelly Beans
6 ~ M 1 ~ L e s s o n ~ 1 6 : ~ S p e e d ~
6 M1 Lesson 20: Solving Rate Problems
6 \text { M2 Lesson 6: Dividing a Whole Number by a Fraction}
6 M2 Lesson 11: Applications of Fraction Division
6 ~ M 2 ~ L e s s o n ~ 1 2 : ~ F r a c t i o n ~ O p e r a t i o n s ~ i n ~ a ~ R e a l - W o r l d ~ S i t u a t i o n
6 ~ M 2 ~ L e s s o n ~ 1 5 : ~ D e c i m a l ~ M u l t i p l i c a t i o n
6 M2 Lesson 20: Real-World Division Problems
6 \text { M2 Lesson 23: Dividing a Decimal by a Decimal Less Than 1}
6 M2 Lesson 24: Living on Mars
6 M3 Lesson 1: Positive and Negative Numbers
6M3 Lesson 4: Rational Numbers in Real-World Situations
6 M3 Lesson 5: Comparing Rational Numbers
6 M3 Lesson 6: Ordering Rational Numbers
6 M3 Lesson 8: Absolute Value and Order
6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 \text { M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations}
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 ~ M 4 ~ L e s s o n ~ 1 6 : ~ E q u i v a l e n t ~ A l g e b r a i c ~ E x p r e s s i o n s ~
6 M4 Lesson 22: Relationship Between Two Variables
6 M4 Lesson 24: Graphs of Non-Ratio Relationships
```

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.DM. 1 continued	6 M4 Lesson 25: The Statue of Liberty 6 M5 Lesson 4: Areas of Triangles in Real-World Situations 6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations 6 M5 Lesson 13: Surface Area in Real-World Situations 6 M5 Lesson 16: Applying Volume Formulas 6 M5 Lesson 17: Problem Solving with Volume 6 M5 Lesson 19: Volume and Surface Area in Real-World Situations 6 M6 Lesson 1: Posing Statistical Questions 6 M6 Lesson 2: Describing a Dot Plot 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 6: Selecting a Data Display 6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures 6 M6 Lesson 19: Comparing Data Distributions
6.DM. 2 Construct visual representations (e.g., bar graphs, charts) to determine patterns or statistical analysis (e.g., mean, median) defined in grade level content standards.	6 M6 Lesson 3: Creating a Dot Plot 6 M6 Lesson 4: Creating a Histogram 6 M6 Lesson 5: Comparing Data Displays 6 M6 Lesson 6: Selecting a Data Display 6 M6 Lesson 7: Using the Mean to Describe the Center 6 M6 Lesson 8: The Mean as a Balance Point 6 M6 Lesson 9: Variability in a Data Distribution 6 M6 Lesson 11: Using the Mean and Mean Absolute Deviation 6 M6 Lesson 12: Using the Median to Describe the Center 6 M6 Lesson 13: Using the Interquartile Range to Describe Variability

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.DM. 2 continued

6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
6 M6 Lesson 15: More Practice with Box Plots
6 M6 Lesson 16: Interpreting Box Plots
6 M6 Lesson 19: Comparing Data Distributions
6 M6 Lesson 20: Choosing a Measure of Center
6 M6 Lesson 21: Comparing Measures of Variability
6 M6 Lesson 22: Presenting Statistical Projects
6 M1 Lesson 1: Jars of Jelly Beans
6 M1 Lesson 16: Speed
6 M1 Lesson 19: Using Rates to Convert Units
6 M2 Lesson 13: Decimal Addition and Subtraction
6 M2 Lesson 15: Decimal Multiplication
6 M2 Lesson 17: Partial Quotients
6 M2 Lesson 19: Expressing Quotients as Decimals
6 M3 Lesson 13: Constructing the Coordinate Plane
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M4 Lesson 9: Addition and Subtraction Expressions from Real-World Situations
6 M4 Lesson 10: Multiplication and Division Expressions from Real-World Situations
6 M4 Lesson 11: Modeling Real-World Situations with Expressions
6 M4 Lesson 12: Applying Properties to Multiplication and Division Expressions
6 M4 Lesson 23: Graphs of Ratio Relationships
6 M4 Lesson 25: The Statue of Liberty
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
6 M6 Lesson 15: More Practice with Box Plots
6 M6 Lesson 16: Interpreting Box Plots
6 M6 Lesson 19: Comparing Data Distributions
6 M6 Lesson 20: Choosing a Measure of Center
6 M6 Lesson 21: Comparing Measures of Variability
6 M1 Lesson 1: Jars of Jelly Beans

Use approximations and evaluate reasonableness of observations, results, and solutions throughout processes.

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.DM. 3 continued

6.DM. 4
Choose data sets and analysis methods
to support the inquiry process.

Integrated STEM Inquiry-Based Approaches and Problem Solving

Indiana Academic Standards:
Integrated STEM

6.IPS. 1

Conduct or extend an original investigation, analyze results, iterate, and revise to improve the design.

Aligned Components of Eureka Math ${ }^{2}$

Indiana Academic Standards:

Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.IPS. 2

Determine one or more viable solutions using data and information to resolve a scenario given criteria and constraints.

6 M1 Lesson 1: Jar of Jelly Beans

6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M1 Lesson 26: Solving Percent Problems
6 M2 Lesson 16: Applications of Decimal Operations
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M4 Lesson 25: The Statue of Liberty
6 M5 Lesson 8: Areas of Composite Figures in Real-World Situations
6 M5 Lesson 14: Designing a Box
6 M6 Lesson 17: Developing a Statistical Project
6 M6 Lesson 22: Presenting Statistical Projects
Supplemental material is necessary to address this standard.

Integrated STEM

Applications and Modeling

Indiana Academic Standards:
 Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.AM. 1

Interpret and evaluate relationships among sets of data (e.g., distance-time graph).

```
6 \text { M1 Lesson 6: Ratio Tables and Double Number Lines}
6 \text { M1 Lesson 7: Graphs of Ratio Relationships}
6 \text { M1 Lesson 8: Addition Patterns in Ratio Relationships}
6 \text { M1 Lesson 9: Multiplication Patterns in Ratio Relationships}
6 \text { M1 Lesson 10: Multiplicative Reasoning in Ratio Relationships}
6 ~ M 1 ~ L e s s o n ~ 1 2 : ~ M u l t i p l e ~ R a t i o ~ R e l a t i o n s h i p s ~
6 M1 Lesson 13: Comparing Ratio Relationships, Part }
6 \text { M1 Lesson 14: Comparing Ratio Relationships, Part } 2
6 \text { M3 Lesson 13: Constructing the Coordinate Plane}
6 M4 Lesson 22: Relationship Between Two Variables
6 \text { M4 Lesson 23: Graphs of Ratio Relationships}
6 \text { M4 Lesson 24: Graphs of Non-Ratio Relationships}
6 \text { M6 Lesson 5: Comparing Data Displays}
6 \text { M6 Lesson 6: Selecting a Data Display}
6 \text { M6 Lesson 9: Variability in a Data Distribution}
6 M6 Lesson 10: The Mean Absolute Deviation
6 \text { M6 Lesson 16: Interpreting Box Plots}
6 M6 Lesson 18: Connecting Graphical Representations and Summary Measures
6 \text { M6 Lesson 19: Comparing Data Distributions}
6 \text { M6 Lesson 20: Choosing a Measure of Center}
6 \text { M6 Lesson 21: Comparing Measures of Variability}
```

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math²

6.AM. 2

Use coordinate planes or number lines to examine information and represent solutions.

```
6 \text { M1 Lesson 6: Ratio Tables and Double Number Lines}
6 \text { M1 Lesson 7: Graphs of Ratio Relationships}
6 ~ M 1 ~ L e s s o n ~ 8 : ~ A d d i t i o n ~ P a t t e r n s ~ i n ~ R a t i o ~ R e l a t i o n s h i p s
6 M1 Lesson 9:Multiplication Patterns in Ratio Relationships
6 M1 Lesson 11: Applications of Ratio Reasoning
6 M1 Lesson 12: Multiple Ratio Relationships
6 M1 Lesson 13: Comparing Ratio Relationships, Part 1
6 M1 Lesson 16: Speed
6 M1 Lesson 17: Rates
6 M1 Lesson 18: Comparing Rates
6 M1 Lesson 19: Using Rates to Convert Units
6 M1 Lesson 20: Solving Rate Problems
6 M1 Lesson 21: Solving Multi-Step Rate Problems
6 M1 Lesson 23: Finding the Percent
6 M1 Lesson 24: Finding a Part
6 M1 Lesson 25: Finding the Whole
6 M1 Lesson 26: Solving Percent Problems
6 M2 Lesson 8: Dividing Fractions by Making Common Denominators
6 M3 Lesson 1: Positive and Negative Numbers
6 M3 Lesson 2: Integers
6 M3 Lesson 3: Rational Numbers
6 M3 Lesson 4: Rational Number in Real-World Situations
6 M3 Lesson 5: Comparing Rational Numbers
6 M3 Lesson 6: Ordering Rational Numbers
```

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math²

```
6 M3 Lesson 7: Absolute Value
6 M3 Lesson 8: Absolute Value and Order
6 M3 Lesson 9: Interpreting Order and Distance in Real-World Situations
6 ~ M 3 ~ L e s s o n ~ 1 0 : ~ T h e ~ F o u r ~ Q u a d r a n t s ~ o f ~ t h e ~ C o o r d i n a t e ~ P l a n e
6 M3 Lesson 11: Plotting Points in the Coordinate Plane
6 \text { M3 Lesson 12: Reflections in the Coordinate Plane}
6 M3 Lesson 13: Constructing the Coordinate Plane
6 M3 Lesson 14: Modeling with the Coordinate Plane
6 M3 Lesson 15: Distance in the Coordinate Plane
6 \text { M3 Lesson 16: Figures in the Coordinate Plane}
6 M3 Lesson 17: Problem Solving with the Coordinate Plane
6 \text { M4 Lesson 18: Inequalities and Solutions}
6 \text { M4 Lesson 22: Relationship Between Two Variables}
6 \text { M4 Lesson 23: Graphs of Ratio Relationships}
6 \text { M4 Lesson 24: Graphs of Non-Ratio Relationships}
6 \text { M4 Lesson 25: The Statue of Liberty}
6 \text { M5 Lesson 5: Perimeter and Area in the Coordinate Plane}
6 \text { M5 Lesson 6: Problem Solving with Area in the Coordinate Plane}
6 M6 Lesson 2: Describing a Data Distribution
6 M6 Lesson 3: Creating a Dot Plot
6 M6 Lesson 4: Creating a Histogram
6 \text { M6 Lesson 5: Comparing Data Displays}
6 \text { M6 Lesson 6: Selecting a Data Display}
6 \text { M6 Lesson 9: Variability in a Data Distribution}
```

Indiana Academic Standards:
Integrated STEM

Aligned Components of Eureka Math ${ }^{2}$

6.AM. 2 continued	6 M6 Lesson 14: Using a Box Plot to Summarize a Distribution
	6 M 6 Lesson 15: More Practice with Box Plots
	6 M 6 Lesson 16: Interpreting Box Plots
	6 M 6 Lesson 17: Developing a Statistical Project
	6 M 6 Lesson 18: Connecting Graphical Representations and Summary Measures
	6 M 6 Lesson 19: Comparing Data Distributions
	6 M 6 Lesson 20: Choosing a Measure of Center
	6 M 6 Lesson 21: Comparing Measure of Variability
6.AM. $\mathbf{3}$	
Use models to compare and contrast	
different systems and explain the factors	
that influence them.	Supplemental material is necessary to address this standard.
6.AM.4	
Use and revise models to describe, test,	
and predict phenomena or solutions.	

Integrated STEM
 Information and Digital Literacy

Indiana Academic Standards:
 Integrated STEM
 Aligned Components of Eureka Math ${ }^{2}$

6.IDL. 1	Supplemental material is necessary to address this standard.		
Identify and evaluate the impact			
of technology when selecting tools			
to solve a problem in order to determine			
the most effective solution.			
:---			
6.IDL. $\mathbf{2}$			
Review and compile information from multiple sources to solve a problem.			
6.IDL. $\mathbf{3}$			
Describe how solutions or technologies are adapted to meet the changing needs and wants of individuals or communities.			

