EUREKA MATH².

Mathematics I | Kansas College & Career Ready Standards Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Quantities

N.Q.3

Reason quantitatively and use units to solve problems.

Kansas College & Career Ready Aligned Components of Eureka Math² **Standards** Math 1 M1 Lesson 1: A Powerful Trio N.Q.1 Use units as a way to understand Math 1 M3 Lesson 14: Comparing Models for Situations problems and to guide the solution Math 1 M6 Lesson 9: Solar System Models of multi-step problems; choose and Math 1 M6 Lesson 10: Designing a Fundraiser interpret units consistently in formulas; choose and interpret the scale and the Math 1 M6 Lesson 11: A Vanishing Sea origin in graphs and data displays. N.Q.2 Math 1 M1 Lesson 1: A Powerful Trio Define appropriate quantities for the Math 1 M3 Lesson 14: Comparing Models for Situations purpose of descriptive modeling. Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M6 Lesson 9: Solar System Models

Math 1 M6 Lesson 11: A Vanishing Sea

reporting quantities.

Choose a level of accuracy appropriate

to limitations on measurement when

Math 1 | Kansas College & Career Ready Standards Correlation to Eureka Math²

Seeing Structure in Expressions

Interpret the structure of expressions.

Kansas College & Career Ready Standards

Aligned Components of Eureka Math²

A.SSE.1 Interpret expressions that represent a quantity in terms of its context.	This standard is fully addressed by the lessons aligned to its subsections.
A.SSE.1a Interpret parts of an expression, such as terms, factors, and coefficients.	Math 1 M1 Lesson 4: Interpreting Linear Expressions
A.SSE.1b Interpret complicated expressions by viewing one or more of their parts as a single entity.	Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 14: Exponential Growth Math 1 M5 Lesson 15: Exponential Decay Math 1 M5 Lesson 16: Modeling Populations Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

Create equations that describe numbers or relationships.

Kansas College & Career Ready Standards

A.CED.1	Math 1 M1 Lesson 5: Printing Presses
Apply and extend previous understanding to create equations and inequalities in one variable and use them to solve problems.	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable Math 1 M1 Lesson 16: Applying Absolute Value
	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
A.CED.2	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Apply and extend previous understanding	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
to create equations in two or more variables to represent relationships	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
between quantities; graph equations	Math 1 M2 Lesson 4: Proving Conditional Statements
on coordinate axes with labels and scales.	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 8: Low-Flow Showerhead
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
A.CED.3	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Represent constraints by equations or	Math 1 M1 Lesson 12: Solution Sets of Compound Statements
inequalities, and by systems of equations	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	Math 1 M1 Lesson 16: Applying Absolute Value
	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	Math 1 M2 Lesson 15: Applications of Linear Inequalities
	Math 1 M6: Lesson 10: Designing a Fundraiser
A.CED.4	Math 1 M1 Lesson 10: Rearranging Formulas
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	

@ 2023 Great Minds PBC | greatminds.org

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Kansas College & Career Ready Standards	Aligned Components of Eureka Math ²
A.REI.1	Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Explain each step in solving a simple	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
equation as following from the equality of numbers asserted at the previous	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
step, starting from the assumption that	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

Kansas College & Career Ready	
Standards	

the original equation has a solution. Construct a viable argument to justify

a solution method.

A.REI.2	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Apply and extend previous understanding	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
to solve equations, inequalities, and compound inequalities in one variable,	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
including literal equations and	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
inequalities.	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
	Math 1 M1 Lesson 14: Solving Absolute Value Equations
	Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

Solve systems of equations.

Kansas College & Career Ready
StandardsAligned Components of Eureka Math2A.REI.6Math 1 M2 Lesson 9: Systems of Linear Equations in Two VariablesAnalyze and solve pairs of simultaneous
linear equations.Math 1 M2 Lesson 10: A New Way to Solve SystemsMath 1 M2 Lesson 11: The Elimination Method
Math 1 M2 Lesson 12: Applications of Systems of Equations

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
A.REI.8	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
A.REI.9	Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Solve an equation $f(x) = g(x)$ by graphing	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
y = f(x) and $y = g(x)$ and finding the x-value of the intersection point. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.	Math 1 M5 Lesson 19: Comparing Growth of Functions

Standards	Aligned Components of Eureka Math ²
A.REI.10	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Graph the solutions to a linear inequality	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
in two variables as a half-plane (excluding the boundary in the case of a	Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
strict inequality), and graph the solution	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
set to a system of linear inequalities	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
in two variables as the intersection of the corresponding half-planes.	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
corresponding hair pidnes.	Math 1 M6 Lesson 10: Designing a Fundraiser

Kansas College & Career Ready

Interpreting Functions

Understand the concept of a function and use function notation.

Kansas College & Career Ready Standards	Aligned Components of Eureka Math ²
F.IF.1	Math 1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x . The graph of f is the graph of the equation $y = f(x)$.	

Standards	Aligned Components of <i>Eureka Math</i> ²
F.IF.2	Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Use function notation, evaluate functions	Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
for inputs in their domains, and interpret	Math 1 M3 Lesson 7: Representations of Functions
statements that use function notation in terms of a context.	Math 1 M5 Lesson 1: Exploring Patterns
	Math 1 M5 Lesson 2: The Recursive Challenge
	Math 1 M5 Lesson 3: Recursive Formulas for Sequences
	Math 1 M5 Lesson 4: Explicit Formulas for Sequences
F.IF.3	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Recognize patterns in order to write	
functions whose domain is a subset of the integers.	

Kansas College & Career Ready

. .

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Kansas College & Career Ready Standards

F.IF.4	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
For a function that models a relationship between two quantities, interpret key features of expressions, graphs and tables in terms of the quantities, and sketch graphs showing key features given a description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph Math 1 M3 Lesson 11: Comparing Functions Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time Math 1 M3 Lesson 15: Mars Curiosity Rover
F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	Math 1 M3 Lesson 4: The Graph of a Function Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.	Math 1 M5 Lesson 17: Average Rate of Change Math 1 M5 Lesson 18: Analyzing Exponential Growth Math 1 M5 Lesson 19: Comparing Growth of Functions Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

Analyze functions using different representations.

Kansas College & Career Ready Standards

F.IF.7	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.	
F.IF.7a	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
Graph linear, quadratic and absolute value functions and show intercepts, maxima, minima and end behavior.	Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions
F.IF.7b Graph square root, cube root, and exponential functions.	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Math 1 M5 Lesson 8: Graphing Exponential Functions Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
F.IF.9	Math 1 M3 Lesson 11: Comparing Functions
Compare properties of two functions using a variety of representations (algebraically, graphically, numerically in tables, or by verbal descriptions).	

Building Functions

Build a function that models a relationship between two quantities.

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
F.BF.1	Math 1 M6 Lesson 3: Analyzing Paint Splatters
Use functions to model real-world relationships.	Math 1 M6 Lesson 9: Solar System Models
F.BF.1a	Math 1 M6 Lesson 8: The Deal
Combine multiple functions to model complex relationships.	
F.BF.1b	Math 1 M1 Lesson 2: Looking for Patterns
Determine an explicit expression,	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
a recursive function, or steps for calculation from a context.	Math 1 M5 Lesson 7: Exponential Functions
	Math 1 M5 Lesson 13: Calculating Interest
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 8: The Deal
	Math 1 M6 Lesson 9: Solar System Models
F.BF.2	Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences
Write arithmetic and geometric sequences and series both recursively and with an explicit formula, use them to model situations, and translate between the two forms.	Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

VZ. Call 0.0 D. - -I.

Building Functions

Build new functions from existing functions.

Kansas College & Career Ready Standards

F.BF.3

Transform parent functions (f(x))by replacing f(x) with f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Aligned Components of Eureka Math²

Math 1 M3 Topic D: Transformations of Functions Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
F.LQE.1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can	Math 1 M5 Lesson 16: Modeling Populations
be modeled with linear functions and with exponential functions.	Math 1 M5 Lesson 20: World Population Prediction
	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea

Kansas College & Career Ready
Standards

F.LQE.1a Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	Math 1 M5 Lesson 18: Analyzing Exponential Growth
F.LQE.1b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Math 1 M5 Lesson 20: World Population Prediction Math 1 M5 Lesson 21: A Closer Look at Populations
F.LQE.1c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Math 1 M5 Lesson 20: World Population Prediction Math 1 M5 Lesson 21: A Closer Look at Populations
F.LQE.2 Construct exponential functions, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs Math 1 M5 Lesson 14: Exponential Growth Math 1 M5 Lesson 15: Exponential Decay Math 1 M5 Topic D: Comparing Linear and Exponential Models Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 8: The Deal Math 1 M6 Lesson 9: Solar System Models

Congruence

Experiment with transformations in the plane.

Kansas College & Career Ready Standards Aligned Components of Eureka Math²

G.CO.2	Math 1 M4 Lesson 1: Geometric Transformations
Recognize transformations as functions	
that take points in the plane as inputs and	
give other points as outputs and describe	
the effect of translations, rotations, and	
reflections on two-dimensional figures.	

Congruence

Understand congruence in terms of rigid motions.

Kansas College & Career Ready Aligned Components of Eureka Math² Standards Standards

G.CO.4	Math 1 M4 Lesson 17: Congruent Triangles
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	
G.CO.5	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Math 1 M4 Lesson 16: Congruent Figures

Aligned Components of <i>Eureka Math</i> ²
Math 1 M4 Lesson 18: Side-Angle-Side
Math 1 M4 Lesson 19: Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Kansas College & Career Peady

Congruence

Make geometric constructions.

Kansas College & Career Ready Standards	Aligned Components of Eureka Math ²
G.CO.11 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given	Math 1 M4 Lesson 6: Compass and Straightedge Constructions Math 1 M4 Lesson 7: Constructing Perpendicular Lines Math 1 M4 Lesson 8: Reflections of the Plane Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles Math 1 M4 Lesson 11: Translations of the Plane Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions Math 1 M4 Lesson 26: Sierpinski Triangle
line through a point not on the line. G.CO.12 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Math 1 M4 Lesson 9: Rotations of the Plane Math 1 M4 Lesson 24: Squares Inscribed in Circles Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically.

Kansas College & Career Ready Standards Aligned Components of Eureka Math² G.GPE.6 Math 1 M2 Lesson 4: Proving Conditional Statements

Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

Kansas College & Career Ready Standards

Aligned Components of Eureka Math²

S.ID.1	Math 1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
S.ID.2 Interpret differences in shape, center, and spread in the context of the data sets using dot plots, histograms, and box plots, accounting for possible effects of extreme data points (outliers).	Math 1 M1 Topic D: Univariate Data

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
S.ID.4	Math 1 M6 Topic B: Modeling with Categorical Data
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.	

Kansas College & Career Ready Standards	Aligned Components of <i>Eureka Math</i> ²
S.ID.5	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID.5a	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Use a given linear function to solve problems in the context of data.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
S.ID.5b	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Fit a linear function to data and use it to solve problems in the context of the data.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
S.ID.5c	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Assess the fit of a function by plotting and analyzing residuals.	Math 1 M2 Lesson 26: Analyzing Residuals
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
S.ID.5d	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Fit quadratic and exponential functions to the data. Use functions fitted to data to solve problems in the context of the data.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea

VZ. -. .

Interpreting Categorical and Quantitative Data

Interpret linear models.

Kansas College & Career Ready Standards

S.ID.6	Math 1 M2 Lesson 24: Modeling Relationships with a Line
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID.7	Math 1 M2 Lesson 27: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
S.ID.8	Math 1 M2 Lesson 27: Interpreting Correlation
Distinguish between correlation and causation.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data