

Mathematics I | Kentucky Mathematics Course Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds® teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students' mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math²

MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Quantities

Reason quantitatively and use units to solve problems.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.N.4 Use units in context as a way to understand problems and to guide the solution of multi-step problems;	Math 1 M1 Lesson 1: A Powerful Trio Math 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser Math 1 M6 Lesson 11: A Vanishing Sea
KY.HS.N.4.a Choose and interpret units consistently in formulas;	Math 1 M1 Lesson 1: A Powerful Trio Math 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser Math 1 M6 Lesson 11: A Vanishing Sea
KY.HS.N.4.b Choose and interpret the scale and the origin in graphs and data displays.	Math 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser Math 1 M6 Lesson 11: A Vanishing Sea
KY.HS.N.5 Define appropriate units in context for the purpose of descriptive modeling.	Math 1 M1 Lesson 1: A Powerful Trio Math 1 M3 Lesson 14: Comparing Models for Situations Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 9: Solar System Models Math 1 M6 Lesson 10: Designing a Fundraiser

Aligned Components of Eureka Math²

KY.HS.N.6	Math 1 M6 Lesson 9: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Math 1 M6 Lesson 11: A Vanishing Sea

Seeing Structure in Expressions

Interpret the structure of expressions.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.1 Interpret expressions that represent a quantity in terms of its context.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.A.1.a Interpret parts of an expression, such as terms, factors and coefficients.	Math 1 M1 Lesson 4: Interpreting Linear Expressions
KY.HS.A.1.b Interpret complicated expressions, given a context, by viewing one or more of their parts as a single entity.	Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 14: Exponential Growth Math 1 M5 Lesson 15: Exponential Decay Math 1 M5 Lesson 16: Modeling Populations Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

Create equations that describe numbers or relationships.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.12 Create equations and inequalities in one variable and use them to solve problems.	Math 1 M1 Lesson 5: Printing Presses Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable Math 1 M1 Lesson 16: Applying Absolute Value
KY.HS.A.13 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables Math 1 M2 Lesson 4: Proving Conditional Statements Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 8: Low-Flow Showerhead Math 1 M2 Lesson 12: Applications of Systems of Equations
KY.HS.A.14 Create a system of equations or inequalities to represent constraints within a modeling context. Interpret the solution(s) to the corresponding system as viable or nonviable options within the context.	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable Math 1 M1 Lesson 12: Solution Sets of Compound Statements Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities Math 1 M1 Lesson 16: Applying Absolute Value Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M2 Lesson 15: Applications of Linear Inequalities Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities Math 1 M6 Lesson 10: Designing a Fundraiser

Aligned Components of Eureka Math²

KY.HS.A.15

Rearrange formulas to solve a literal equation, highlighting a quantity of interest, using the same reasoning as in solving equations.

Math 1 M1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.16

Understand each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution.

Construct a viable argument to justify a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties

Math 1 M1 Lesson 7: Solving Linear Equations in One Variable

Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations

Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.18

Solve linear equations and inequalities in one variable, including literal equations with coefficients represented by letters. Math 1 M1 Lesson 5: Printing Presses

Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable

Math 1 M1 Lesson 7: Solving Linear Equations in One Variable

Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations

Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable

Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities

Math 1 M1 Lesson 14: Solving Absolute Value Equations

Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

Solve systems of equations.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.20

Solve systems of linear equations in two variables.

This standard is fully addressed by the lessons aligned to its subsections.

Aligned Components of Eureka Math²

KY.HS.A.20.a	Math 1 M2 Lesson 10: A New Way to Solve Systems
Understand a system of two equations in two variables has the same solution as a new system formed by replacing one of the original equations with an equivalent equation.	
KY.HS.A.20.b	Math 1 M2 Topic B: Systems of Linear Equations in Two Variables
Solve systems of linear equations with graphs, substitution and elimination, focusing on pairs of linear equations in two variables.	

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.A.23	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Aligned Components of Eureka Math²

KY.HS.A.24	Math 1 M3 Lesson 10: Using Graphs to Solve Equations
Justify that the solutions of the equations $f(x) = g(x)$ are the x-coordinates of the points where the graphs of $y = f(x)$ and $y = g(x)$ intersect. Find the approximate solutions graphically, using technology or tables.	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions Math 1 M5 Lesson 19: Comparing Growth of Functions
KY.HS.A.25 Graph linear inequalities in two variables.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.A.25.a	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Graph the solutions to a linear inequality as a half-plane (excluding the boundary in the case of a strict inequality).	Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
KY.HS.A.25.b	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Graph the solution set to a system	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
of linear inequalities as the intersection of the corresponding half-planes.	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

Understand the concept of a function and use function notation.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.1	This standard is fully addressed by the lessons aligned to its subsections.
Understand properties and key features of functions and the different ways functions can be represented.	
KY.HS.F.1.a	Math 1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x .	
KY.HS.F.1.b Using appropriate function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of a context.	Math 1 M3 Lesson 2: Interpreting and Using Function Notation Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions Math 1 M3 Lesson 7: Representations of Functions Math 1 M5 Lesson 1: Exploring Patterns Math 1 M5 Lesson 2: The Recursive Challenge Math 1 M5 Lesson 3: Recursive Formulas for Sequences Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Aligned Components of Eureka Math²

KY.HS.F.1.c	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
For a function that models a relationship	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
between two quantities, interpret key features of graphs and tables in terms	Math 1 M3 Lesson 11: Comparing Functions
of the quantities and sketch graphs	Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
showing key features given a verbal	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
description of the relationship.	Math 1 M3 Lesson 15: Mars Curiosity Rover
KY.HS.F.1.d	Math 1 M3 Lesson 4: The Graph of a Function
Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
KY.HS.F.1.e	Math 1 M3 Lesson 11: Comparing Functions
Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	
KY.HS.F.2	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Recognize that arithmetic and geometric sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.	

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.3	This standard is fully addressed by the lessons aligned to its subsections.
Understand average rate of change of a function over an interval.	
KY.HS.F.3.a	Math 1 M5 Lesson 17: Average Rate of Change
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.	Math 1 M5 Lesson 18: Analyzing Exponential Growth Math 1 M5 Lesson 19: Comparing Growth of Functions Math 1 M5 Lesson 23: Modeling an Invasive Species Population
KY.HS.F.3.b Estimate the rate of change from a graph.	Math 1 M5 Lesson 17: Average Rate of Change

Interpreting Functions

Analyze functions using different representations.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.4	This standard is addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically and show key features of the graph, with and without using technology (computer, graphing calculator).	

Aligned Components of Eureka Math²

KY.HS.F.4.a Graph linear and quadratic functions and show intercepts, maxima and minima.	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$ Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions Supplemental material is necessary to address quadratic functions for this standard.
KY.HS.F.4.d Graph exponential and logarithmic functions, showing intercepts and end behavior.	Math 1 M5 Lesson 8: Graphing Exponential Functions Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Supplemental material is necessary to address logarithmic functions for this standard.

Building Functions

Build a function that models a relationship between two quantities.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.6	Math 1 M6 Lesson 3: Analyzing Paint Splatters
Write a function that describes a relationship between two quantities.	Math 1 M6 Lesson 9: Solar System Models
KY.HS.F.6.a	Math 1 M1 Lesson 2: Looking for Patterns
Determine an explicit expression, a recursive process, or steps for calculation from a context.	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
	Math 1 M5 Lesson 7: Exponential Functions
	Math 1 M5 Lesson 13: Calculating Interest
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 8: The Deal
	Math 1 M6 Lesson 9: Solar System Models

Aligned Components of Eureka Math²

KY.HS.F.6.b	Math 1 M6 Lesson 8: The Deal
Combine standard function types using arithmetic operations.	
KY.HS.F.7 Use arithmetic and geometric sequences to model situations and scenarios.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.F.7.a Use formulas (explicit and recursive) to generate terms for arithmetic and geometric sequences.	Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences Math 1 M6 Lesson 8: The Deal
KY.HS.F.7.b Write formulas to model arithmetic and geometric sequences and apply those formulas in realistic situations.	Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences Math 1 M6 Lesson 8: The Deal
KY.HS.F.7.c Translate between recursive and explicit formulas.	Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Building Functions

Build new functions from existing functions.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.8	This standard is fully addressed by the lessons aligned to its subsections.
Understand the effects of transformations on the graph of a function.	
KY.HS.F.8.a	Math 1 M3 Topic D: Transformations of Functions
Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs.	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1) Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
KY.HS.F.8.b	Math 1 M3 Lesson 16: Exploring the Transformations of the Graphs of Functions
Experiment with cases and illustrate an explanation of the effects on the graph using technology.	Math 1 M3 Lesson 17: Building New Functions—Translations

Linear, Quadratic and Exponential Functions

Construct and compare linear, quadratic and exponential models and solve problems.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.11	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can be modeled with linear functions and with exponential functions.	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 20: World Population Prediction
with exponential functions.	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
KY.HS.F.11.a	Math 1 M5 Lesson 18: Analyzing Exponential Growth
Recognize and justify that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.	
KY.HS.F.11.b	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations
KY.HS.F.11.c	Math 1 M5 Lesson 20: World Population Prediction
Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	Math 1 M5 Lesson 21: A Closer Look at Populations

Aligned Components of Eureka Math²

KY.HS.F.12

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Math 1 M5 Lesson 7: Exponential Functions

Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Math 1 M5 Lesson 14: Exponential Growth

Math 1 M5 Lesson 15: Exponential Decay

Math 1 M5 Topic D: Comparing Linear and Exponential Models

Math 1 M6 Lesson 3: Analyzing Paint Splatters

Math 1 M6 Lesson 8: The Deal

Math 1 M6 Lesson 9: Solar System Models

KY.HS.F.13

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Math 1 M5 Lesson 19: Comparing Growth of Functions

Supplemental material is necessary to address quadratic functions (and more generally, polynomial functions) for this standard.

Linear, Quadratic and Exponential Functions

Interpret expressions for functions in terms of the situation they model.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.F.14	Math 1 M5 Lesson 16: Modeling Populations
Interpret the parameters in a linear	Math 1 M5 Lesson 18: Analyzing Exponential Growth
or exponential function in terms of a context.	Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
of a context.	Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Congruence

Experiment with transformations in the plane.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.G.1 Know and apply precise definitions of the language of Geometry.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.G.1.a Understand properties of line segments, angles and circle.	Math 1 M4 Lesson 2: Translations of the Coordinate Plane Math 1 M4 Lesson 3: Rotations of the Coordinate Plane Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
KY.HS.G.1.b Understand properties of and differences between perpendicular and parallel lines.	Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
KY.HS.G.2 Representing transformations in the plane.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.G.2.a Describe transformations as functions that take points in the plane as inputs and give other points as outputs.	Math 1 M4 Lesson 1: Geometric Transformations
KY.HS.G.2.b Compare transformations that preserve distance and angle measures to those that do not.	Math 1 M4 Lesson 1: Geometric Transformations

Aligned Components of Eureka Math²

KY.HS.G.2.c	Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Given a rectangle, parallelogram, trapezoid, or regular polygon, formally describe the rotations and reflections that carry it onto itself, using properties of these figures.	
KY.HS.G.3	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Develop formal definitions of rotations,	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
reflections and translations in terms	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
of angles, circles, perpendicular lines, parallel lines and line segments.	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 8: Reflections of the Plane
	Math 1 M4 Lesson 9: Rotations of the Plane
	Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
	Math 1 M4 Lesson 11: Translations of the Plane
KY.HS.G.4	This standard is fully addressed by the lessons aligned to its subsections.
Understand the effects of transformations of geometric figures.	
KY.HS.G.4.a	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Given a geometric figure and a rotation,	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
reflection, or translation, draw the	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
transformed figure.	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
	Math 1 M4 Lesson 15: Designs with Rigid Motions

Aligned Components of Eureka Math²

KY.HS.G.4.b Specify a sequence of transformations that will carry a given figure onto another.	Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 15: Designs with Rigid Motions Math 1 M4 Lesson 16: Congruent Figures
KY.HS.G.4.c Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure. Given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane Math 1 M4 Lesson 16: Congruent Figures

Congruence

Understand congruence in terms of rigid motions.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.G.5	This standard is fully addressed by the lessons aligned to its subsections.
Know and apply the concepts of triangle congruence.	
KY.HS.G.5.a	Math 1 M4 Lesson 17: Congruent Triangles
Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	

Aligned Components of Eureka Math²

KY.HS.G.5.b	Math 1 M4 Lesson 18: Side-Angle-Side
Explain how the criteria for triangle congruence (ASA, SAS and SSS) follow from the definition of congruence in terms of rigid motions.	Math 1 M4 Lesson 19: Angle-Angle and Side-Side-Side Math 1 M4 Lesson 20: Angle-Side-Angle Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

Make geometric constructions.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.G.8	This standard is fully addressed by the lessons aligned to its subsections.
Create and apply geometric constructions.	
KY.HS.G.8.a	Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Make formal geometric constructions	Math 1 M4 Lesson 7: Constructing Perpendicular Lines
with a variety of tools and methods.	Math 1 M4 Lesson 8: Reflections of the Plane
	Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
	Math 1 M4 Lesson 11: Translations of the Plane
	Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions
	Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions
	Math 1 M4 Lesson 26: Sierpinski Triangle
KY.HS.G.8.b	Math 1 M4 Lesson 9: Rotations of the Plane
Apply basic construction procedures to construct more complex figures.	Math 1 M4 Lesson 24: Squares Inscribed in Circles
	Math 1 M4 Lesson 25: Regular Hexagons and Equilateral Triangles Inscribed in Circles

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.G.21 Use coordinates to justify and prove simple geometric theorems algebraically.	Math 1 M2 Lesson 4: Proving Conditional Statements Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
KY.HS.G.22 Justify and apply the slope criteria for parallel and perpendicular lines and use them to solve geometric problems.	Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
KY.HS.G.24 Use coordinates within the coordinate plane to calculate measurements of two-dimensional figures.	This standard is fully addressed by the lessons aligned to its subsections.
KY.HS.G.24.a Compute the perimeters of various polygons.	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
KY.HS.G.24.b Compute the areas of triangles, rectangles and other quadrilaterals.	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures Math 1 M6 Lesson 11: A Vanishing Sea

Interpreting Categorical and Quantitative Data

Summarize, represent and interpret data on a single count or measurement variable.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.SP.1	Math 1 M1 Lesson 17: Distributions and Their Shapes
Represent the distribution of data with plots on the real number line (stem plots, dot plots, histograms and box plots).	Math 1 M1 Lesson 18: Describing the Center of a Distribution
	Math 1 M1 Lesson 19: Using Center to Compare Data Distributions
	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
KY.HS.SP.2	Math 1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the numerical data distribution to compare center (median, mean) and spread (interquartile range when comparing medians and standard deviation when comparing means) of different data distributions.	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
KY.HS.SP.3	Math 1 M1 Topic D: Univariate Data
Interpret differences in shape, center and spread in the context of the distributions of the numerical data, accounting for the presence and possible effects of extreme data points (outliers).	

Interpreting Categorical and Quantitative Data

Summarize, represent and interpret data on two categorical and quantitative variables.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

KY.HS.SP.5	Math 1 M6 Topic B: Modeling with Categorical Data
Summarize categorical data for two or more categories in frequency tables. Calculate and interpret joint, marginal and conditional relative frequencies (probabilities) in the context of the data, recognizing possible associations and trends in the data.	
KY.HS.SP.6	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot and describe how the explanatory and response variables are related.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
KY.HS.SP.6.a	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Calculate an appropriate mathematical model, or use a given mathematical model, for data to solve problems in context.	Math 1 M2 Lesson 24: Modeling Relationships with a Line
	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
KY.HS.SP.6.b	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Informally assess the fit of a model (through calculating correlation for linear data, plotting, calculating and/or analyzing residuals).	Math 1 M2 Lesson 26: Analyzing Residuals
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters

Interpreting Categorical and Quantitative Data

Interpret linear models.

Kentucky Mathematics Course Standards

Aligned Components of Eureka Math²

Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Math 1 M2 Lesson 24: Modeling Relationships with a Line
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
This standard is fully addressed by the lessons aligned to its subsections.
Math 1 M2 Lesson 27: Interpreting Correlation
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
Math 1 M2 Lesson 27: Interpreting Correlation
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
Math 1 M2 Lesson 27: Interpreting Correlation
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data