

Algebra I | Maine Mathematics Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds® teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students' mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math²

1. Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
2. Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
 Construct viable arguments and critique the reasoning of others. 	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
4. Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
5. Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
6. Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
7. Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
8. Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Algebraic Reasoning—Algebra: Seeing Structure in Expressions

AR.A.1 Interpret the structure of expressions.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.1.HSA.SSE.A.1 Interpret expressions that represent a quantity in terms of its context.	This standard is fully addressed by the lessons aligned to its subsections.
AR.A.1.SSE.A.1a Interpret parts of an expression, such as terms, factors, and coefficients.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
AR.A.1.SSE.A.1b Interpret multi-part expressions by	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth
viewing one or more of their parts as a single entity.	A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
AR.A.1.HSA.SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Use the structure of an expression to identify ways to rewrite it.	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties A1 M1 Lesson 3: Polynomial Expressions A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Algebraic Reasoning—Algebra: Seeing Structure in Expressions

AR.A.2 Write expressions in equivalent forms to reveal information and to solve problems.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.2.HSA.SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.	This standard is fully addressed by the lessons aligned to its subsections.
AR.A.2.HSA.SSE.B.3a Rewrite a quadratic expression (such as by factoring) to reveal the zeros of the function it defines. AR.A.2.HSA.SSE.B.3b Rewrite a quadratic expression (such as by completing the square) to reveal the maximum or minimum value of the function it defines.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
AR.A.2.HSA.SSE.B.3c Use the properties of exponents to transform expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations

Algebraic Reasoning—Algebra: Arithmetic with Polynomials & Rational Expressions

AR.A.3 Perform arithmetic operations on polynomials.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.3.HSA.APR.A.1	This standard is fully addressed by the lessons aligned to its subsections.
Understand that polynomials form a system analogous to the integers, namely, they are closed under certain operations.	
AR.A.3.HSA.APR.A.1a	A1 M1 Lesson 3: Polynomial Expressions
Perform operations on polynomial	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
expressions (addition, subtraction,	A1 M1 Lesson 5: Multiplying Polynomial Expressions
multiplication, and division), and compare the system of polynomials to the system of integers.	A1 M1 Lesson 6: Polynomial Identities
AR.A.3.HSA.APR.A.1b	A1 M1 Lesson 1: The Growing Pattern of Ducks
Factor and/or expand polynomial expressions, identify and combine like terms, and apply the Distributive Property.	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
	A1 M1 Lesson 3: Polynomial Expressions
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Topic B: Factoring
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square

Algebraic Reasoning—Algebra: Creating Equations and/or Inequalities

AR.A.7 Create equations and/or inequalities that describe numbers or relationships.

Maine Mathematics Standards

Aligned Components of Eureka Math²

Waine Wathernatics Standards	Aligned Components of Eureka Wattr
AR.A.7.HSA.CED.A.1	A1 M1 Lesson 7: Printing Presses
Create equations and inequalities in one	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
variable and use them to solve problems. Include equations arising from linear and	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
quadratic functions, and simple rational	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
and exponential functions.	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
AR.A.7.HSA.CED.A.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create equations in two or more variables	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
to represent relationships between	A1 M2 Lesson 3: Creating Linear Equations in Two Variables
quantities; graph equations on coordinate axes with labels and scales.	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
AR.A.7.HSA.CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a	A1 M1 Lesson 14: Solution Sets of Compound Statements
	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
modeling context.	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models

Aligned Components of Eureka Math²

AR.A.7.HSA.CED.A.4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. A1 M1 Lesson 12: Rearranging Formulas

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Algebraic Reasoning—Algebra: Reasoning with Equations & Inequalities

AR.A.8 Understand solving equations as a process of reasoning and explain the reasoning.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.8.HSA.REI.A.1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution.

Construct a viable argument to justify or refute a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable

A1 M1 Lesson 10: Some Potential Dangers When Solving Equations

A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Algebraic Reasoning—Algebra: Reasoning with Equations & Inequalities

AR.A.9 Solve equations and inequalities in one variable.

Maine Mathematics Standards

Aligned Components of Eureka Math²

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M1 Lesson 16: Solving Absolute Value Equations
A1 M1 Lesson 17: Solving Absolute Value Inequalities
This standard is fully addressed by the lessons aligned to its subsections.
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula

Aligned Components of Eureka Math²

AR.A.9.HSA.REI.B.4b.i

Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions

A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check

A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term

A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring

A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square

A1 M4 Lesson 15: Deriving the Quadratic Formula

A1 M4 Lesson 16: Solving Quadratic Equations

A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Algebraic Reasoning—Algebra: Reasoning with Equations & Inequalities

AR.A.10 Solve systems of equations.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.10.HSA.REI.C.5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

A1 M2 Lesson 9: A New Way to Solve Systems

Aligned Components of Eureka Math²

AR.A.10.HSA.REI.C.6	A1 M2 Lesson 7: Low-Flow Showerhead
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables A1 M2 Lesson 9: A New Way to Solve Systems A1 M2 Lesson 10: The Elimination Method A1 M2 Lesson 11: Applications of Systems of Equations
AR.A.10.HSA.REI.C.7	A1 M4 Lesson 24: Another Look at Systems of Equations
Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	

Algebraic Reasoning—Algebra: Reasoning with Equations & Inequalities

AR.A.11 Represent and solve equations and inequalities graphically.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.11.HSA.REI.D.10	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Show that any point on the graph of an equation in two variables is a solution to the equation.	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Aligned Components of Eureka Math²

AR.A.11.HSA.REI.D.11

Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

A1 M3 Lesson 10: Using Graphs to Solve Equations

A1 M3 Lesson 15: The Absolute Value Function

A1 M4 Lesson 24: Another Look at Systems of Equations

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M5 Lesson 20: Comparing Growth of Functions

AR.A.11.HSA.REI.D.12

Graph the solutions of a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set of a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables

A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables

A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities

A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities

A1 M2 Lesson 14: Applications of Systems of Linear Inequalities

Algebraic Reasoning-Functions: Interpreting Functions

AR.A.12 Understand the concept of a function and use function notation.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.12.HSF.IF.A.1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).

A1 M3 Topic A: Functions and Their Graphs

AR.A.12.HSF.IF.A.2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1 M3 Lesson 1: The Definition of a Function

A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions

A1 M3 Lesson 6: Representations of Functions

A1 M3 Lesson 16: Step Functions

A1 M5 Lesson 1: Exploring Patterns

A1 M5 Lesson 2: The Recursive Challenge

A1 M5 Lesson 3: Recursive Formulas for Sequences

A1 M5 Lesson 4: Explicit Formulas for Sequences

A1 M5 Lesson 7: Sierpinski Triangle

Aligned Components of Eureka Math²

AR.A.12.HSF.IF.A.3

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

A1 M5 Lesson 1: Exploring Patterns

A1 M5 Lesson 2: The Recursive Challenge

A1 M5 Lesson 3: Recursive Formulas for Sequences

A1 M5 Lesson 4: Explicit Formulas for Sequences

A1 M5 Lesson 5: Arithmetic and Geometric Sequences

A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Algebraic Reasoning-Functions: Interpreting Functions

AR.A.13 Interpret functions that arise in applications in terms of the context.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.13.HSF.IF.B.4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features may include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative and absolute maximums and minimums; symmetries; end behavior; and periodicity.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph

A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph

A1 M3 Lesson 9: Representing Functions from Verbal Descriptions

A1 M3 Lesson 11: Comparing Functions

A1 M3 Lesson 12: Mars Curiosity Rover

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 2: Projectile Motion

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 25: Maximizing Area

Aligned Components of Eureka Math²

AR.A.13.HSF.IF.B.5	A1 M3 Lesson 3: The Graph of a Function
Relate the domain of a function to its	A1 M3 Lesson 13: Modeling Elevation as a Function of Time
graph and, where applicable, to the quantitative relationship it describes.	A1 M3 Lesson 16: Step Functions
quantitative relationship it describes.	A1 M4 Lesson 2: Projectile Motion
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
AR.A.13.HSF.IF.B.6	A1 M4 Lesson 1: Falling Objects
Calculate and interpret the average	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
rate of change of a function (presented symbolically or as a table) over a specified	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
interval. Estimate the rate of change	A1 M5 Lesson 19: Analyzing Exponential Growth
from a graph.	A1 M5 Lesson 20: Comparing Growth of Functions
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Algebraic Reasoning—Functions: Interpreting Functions

AR.A.14 Analyze functions using different representations.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.14.HSF.IF.C.7	This standard is fully addressed by the lessons aligned to its subsections.
Graph functions expressed symbolically as well as show and describe key features of the graph, by hand in simple cases and using technology for more complicated cases.	

Aligned Components of Eureka Math²

AR.A.14.HSF.IF.C.7a	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph linear and quadratic functions and show intercepts, maxima, and minima.	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
	A1 M3 Lesson 6: Representations of Functions
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
AR.A.14.HSF.IF.C.7b.i	A1 M3 Topic C: Piecewise-Defined Linear Functions
Graph square root and piecewise-defined functions (including step functions and absolute value functions), as well as show	A1 M3 Lesson 19: Building New Functions—Translations
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
and describe key features of the graph.	Supplementary material is necessary to address graphing square root functions.
AR.A.14.HSF.IF.C.7e.i	A1 M5 Lesson 11: Graphing Exponential Functions
Graph exponential functions, showing intercepts and end behavior.	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
AR.A.14.HSF.IF.C.8	This standard is fully addressed by the lessons aligned to its subsections.
Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.	

Aligned Components of Eureka Math²

AR.A.14.HSF.IF.C.8a Use the process of factoring and completing the square in a quadratic function to show zeros, maximum and minimum values, and symmetry of the graph, and interpret these in terms of a context.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
AR.A.14.HSF.IF.C.8b Use the properties of exponents to interpret expressions for exponential functions.	A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
AR.A.14.HSF.IF.C.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	A1 M3 Lesson 11: Comparing Functions A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Algebraic Reasoning-Functions: Building Functions

AR.A.15 Build a function that models a relationship between two quantities.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.15.HSF.BF.A.1	A1 M6 Lesson 5: Solar System Models
Write a function that describes a relationship between two quantities.	

Aligned Components of Eureka Math²

A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M5 Topic A: Arithmetic and Geometric Sequences
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 15: Calculating Interest
A1 M6 Topic B: Developing Models for Contexts
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 6: Designing a Fundraiser
A1 M6 Lesson 7: World Record Doughnut
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1 M5 Lesson 7: Sierpinski Triangle

Algebraic Reasoning-Functions: Building Functions

AR.A.16 Build new functions from existing functions.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.16.HSF.BF.B.3

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

A1 M3 Topic D: Transformations of Functions

A1 M4 Lesson 20: Art with Transformations

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)

A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs

A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Algebraic Reasoning-Functions: Linear, Quadratic, & Exponential Models

AR.A.17 Construct and compare linear, quadratic, and exponential models and solve problems.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.17.HSF.LE.A.1

Distinguish between situations that can be modeled with linear functions and with exponential functions. A1 M5 Lesson 15: Calculating Interest

A1 M5 Lesson 18: Modeling Populations

A1 M5 Lesson 21: World Population Prediction

A1 M5 Lesson 22: A Closer Look at Populations

A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M6 Topic A: Modeling Bivariate Quantitative Data

Aligned Components of Eureka Math²

AR.A.17.HSF.LE.A.1a Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	A1 M5 Lesson 19: Analyzing Exponential Growth
AR.A.17.HSF.LE.A.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Topic D: Comparing Linear and Exponential Models A1 M6 Topic B: Developing Models for Contexts
AR.A.17.HSF.LE.A.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	A1 M5 Lesson 20: Comparing Growth of Functions

Algebraic Reasoning—Functions: Linear, Quadratic, & Exponential Models

AR.A.18 Interpret expressions for function in terms of the situation they model.

Maine Mathematics Standards

Aligned Components of Eureka Math²

AR.A.18.HSF.LE.B.5	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters in a linear or	A1 M5 Lesson 19: Analyzing Exponential Growth
exponential function in terms of a context.	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Quantitative Reasoning—Number and Quantity: The Real Number System

QR.A.1 Extend the properties of exponents to rational exponents.

Maine Mathematics Standards

Aligned Components of Eureka Math²

QR.A.1.HSN.RN.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.	A1 M5 Lesson 10: Rational Exponents
QR.A.1.HSN.RN.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents.	A1 M5 Lesson 10: Rational Exponents

Quantitative Reasoning—Number and Quantity: The Real Number System

QR.A.2 Use properties of rational and irrational numbers.

Maine Mathematics Standards

Aligned Components of Eureka Math²

QR.A.2.HSN.RN.B.3	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Explain when and why the sum or product of two rational and/or irrational numbers is rational or irrational.	A1 M4 Lesson 17: Rewriting Square Roots

Quantitative Reasoning—Number and Quantity: Quantities

QR.A.3 Reason quantitatively and use units to solve problems.

Maine Mathematics Standards

Aligned Components of Eureka Math²

QR.A.3.HSN.Q.A.1	A1 M6 Lesson 5: Solar System Models
Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
QR.A.3.HSN.Q.A.2	A1 M4 Lesson 25: Maximizing Area
Define appropriate quantities for the purpose of descriptive modeling.	A1 M6 Lesson 5: Solar System Models
QR.A.3.HSN.Q.A.3	A1 M6 Lesson 5: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	

Statistical Reasoning—Statistics & Probability: Interpreting Categorical & Quantitative Data

SR.A.1 Summarize, represent, and interpret data on a single count or measurement variable.

Maine Mathematics Standards

Aligned Components of Eureka Math²

SR.A.1.HSS.ID.A.1	A1 M1 Lesson 18: Distributions and Their Shapes
Represent data with plots on the real number line (dot plots, histograms, and box plots).	A1 M1 Lesson 19: Describing the Center of a Distribution A1 M1 Lesson 20: Using Center to Compare Data Distributions

Aligned Components of Eureka Math²

SR.A.1.HSS.ID.A.2	A1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	
SR.A.1.HSS.ID.A.3	A1 M1 Topic D: Univariate Data
Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	

Statistical Reasoning—Statistics & Probability: Interpreting Categorical & Quantitative Data

SR.A.2 Summarize, represent, and interpret data on two categorical variables and two quantitative variables.

Maine Mathematics Standards

Aligned Components of Eureka Math²

SR.A.2.HSS.ID.B.5	A1 M2 Topic D: Categorical Data on Two Variables
Summarize categorical data for two	
categories in two-way frequency tables.	
Interpret relative frequencies in the	
context of the data (including joint,	
marginal, and conditional relative	
frequencies). Recognize possible	
associations and trends in the data.	

Aligned Components of Eureka Math²

SR.A.2.HSS.ID.B.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
SR.A.2.HSS.ID.B.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M4 Lesson 26: Modeling Data with Quadratic Functions A1 M4 Lesson 27: Search and Rescue Helicopter A1 M6 Topic A: Modeling Bivariate Quantitative Data
SR.A.2.HSS.ID.B.6b Informally assess the fit of a function by plotting and analyzing residuals.	A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 19: Analyzing Residuals A1 M6 Topic A: Modeling Bivariate Quantitative Data
SR.A.2.HSS.ID.B.6c Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 20: Interpreting Correlation A1 M6 Topic A: Modeling Bivariate Quantitative Data

Statistical Reasoning—Statistics & Probability: Interpreting Categorical & Quantitative Data SR.A.3 Interpret linear models.

Maine Mathematics Standards

Aligned Components of Eureka Math²

SR.A.3.HSS.ID.C.7	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
SR.A.3.HSS.ID.C.8	A1 M2 Lesson 20: Interpreting Correlation
Compute (using technology) and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
SR.A.3.HSS.ID.C.9	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data