Mathematics || Michigan Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 @}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math ${ }^{2}$ teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Quantities

Reason quantitatively and use units to solve problems.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSN-Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

HSN-Q.A. 2

Define appropriate quantities for the purpose of descriptive modeling.
HSN-Q.A. 3

Choose a level of accuracy appropriate

Math 1 M1 Lesson 1: A Powerful Trio
Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 10: Designing a Fundraiser
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 M1 Lesson 1: A Powerful Trio
Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 11: A Vanishing Sea to limitations on measurement when reporting quantities.

Seeing Structure in Expressions

 Interpret the structure of expressions.
Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.

This standard is fully addressed by the lessons aligned to its subsections.

Michigan Mathematics Standards

HSA-SSE.A.1.a

Interpret parts of an expression, such as terms, factors, and coefficients.

HSA-SSE.A.1.b

Interpret complicated expressions by viewing one or more of their parts as a single entity.

Aligned Components of Eureka Math²

Math 1 M1 Lesson 4: Interpreting Linear Expressions

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

Create equations that describe numbers or relationships.
Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems.
L

HSA-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
Math 1 M2 Lesson 4: Proving Conditional Statements
Math 1 M2 Lesson 5: Proving Biconditional Statements
Math 1 M2 Lesson 8: Low-Flow Showerhead
Math 1 M2 Lesson 12: Applications of Systems of Equations
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Michigan Mathematics Standards

HSA-CED.A. 3

Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.

HSA-CED.A. 4

Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Aligned Components of Eureka Math ${ }^{2}$
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 12: Solution Sets of Compound Statements
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 16: Applying Absolute Value
Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 15: Applications of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Michigan Mathematics Standards

HSA-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Reasoning with Equations and Inequalities

Solve equations and inequalities in one variable.

Michigan Mathematics Standards

HSA-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

Solve systems of equations.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSA-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

HSA-REI.C. 6

Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.

Math 1 M2 Lesson 10: A New Way to Solve Systems

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

HSA-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

HSA-REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Math 1 M3 Lesson 10: Using Graphs to Solve Equations

Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
Math 1 M5 Lesson 19: Comparing Growth of Functions

Supplemental material is necessary to address polynomial, rational, and logarithmic functions for this standard.

Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables

Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Interpreting Functions

Understand the concept of a function and use function notation.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

Math 1 M3 Topic A: Functions and Their Graphs

HSF-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
HSF-IF.A. 3
Recognize that sequences are functions,
sometimes defined recursively, whose
domain is a subset of the integers.

Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Math 1 M5 Topic A: Arithmetic and Geometric Sequences

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
Math 1 M3 Lesson 11: Comparing Functions
Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
Math 1 M3 Lesson 15: Mars Curiosity Rover

Math 1 M3 Lesson 4: The Graph of a Function
Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Math 1 M5 Lesson 17: Average Rate of Change
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 19: Comparing Growth of Functions
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Interpreting Functions

Analyze functions using different representations.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

HSF-IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

This standard is addressed by the lessons aligned to its subsections.

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations Math 1 M3 Lesson 7: Representations of Functions

Supplemental material is necessary to address quadratic functions for this standard.

HSF-IF.C.7.e

Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

Math 1 M5 Lesson 8: Graphing Exponential Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Supplemental material is necessary to address logarithmic and trigonometric functions for this standard.

HSF-IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Building Functions

Build a function that models a relationship between two quantities.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSF-BF.A.1 Write a function that describes a relationship between two quantities.	Math 1 M6 Lesson 3: Analyzing Paint Splatters
HSF-BF.A.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context.	Math 1 M1 Lesson 9: Solar System Models Math 1 M5 Topic A: Arithmetic and Geometric Sequences Math 1 M5 Lesson 7: Exponential Functions Math 1 M5 Lesson 13: Calculating Interest Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 8: The Deal HSF-BF.A.1.b Combine standard function types using arithmetic operations. Math 1 M6 Lesson 9: Solar System Models HSF-BF.A.2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.
Math 1 M6 Lesson 8: The Deal	

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Building Functions

Build new functions from existing functions.

Michigan Mathematics Standards

HSF-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M3 Topic D: Transformations of Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

```
Math 1 M5 Lesson 13: Calculating Interest
Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations
Math 1M5 Lesson 23: Modeling an Invasive Species Population
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea
```


Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSF-LE.A.1.a

Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

HSF-LE.A.1.b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

HSF-LE.A.1.c

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

HSF-LE.A. 2

Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

Math 1 M5 Lesson 18: Analyzing Exponential Growth

Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations

Math 1 M5 Lesson 20: World Population Prediction
Math 1 M5 Lesson 21: A Closer Look at Populations

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth
Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.A. 3

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Math 1 M5 Lesson 19: Comparing Growth of Functions
Supplemental material is necessary to address quadratic functions (and more generally, polynomial functions) for this standard.

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.B. 5

Interpret the parameters in a linear or exponential function in terms of a context.

Math 1 M5 Lesson 16: Modeling Populations
Math 1 M5 Lesson 18: Analyzing Exponential Growth
Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Congruence

Experiment with transformations in the plane.

Michigan Mathematics Standards

HSG-CO.A. 1

Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M4 Lesson 2: Translations of the Coordinate Plane

Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSG-CO.A. 2

Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

HSG-CO.A. 3

Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

HSG-CO.A. 4

Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

Math 1 M4 Lesson 1: Geometric Transformations

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane

Michigan Mathematics Standards

HSG-CO.A. 5

Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Aligned Components of Eureka Math²

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 15: Designs with Rigid Motions
Math 1 M4 Lesson 16: Congruent Figures

Congruence

Understand congruence in terms of rigid motions.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSG-CO.B. 6

Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

HSG-CO.B. 7

Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSG-CO.B. 8

Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Math 1 M4 Lesson 18: Side-Angle-Side
Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

Make geometric constructions.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSG-CO.D.12	Math 1 M4 Lesson 6: Compass and Straightedge Constructions
Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).	Math 1 M4 Lesson 7: Constructing Perpendicular Lines Math 1 M4 Lesson 8: Reflections of the Plane Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles Math 1 M4 Lesson 11: Translations of the Plane Math 1 M4 Lesson 22: Validating Triangle and Angle Constructions Math 1 M4 Lesson 23: Validating Perpendicular Line Constructions Math 1 M4 Lesson 26: Sierpinski Triangle HSG-CO.D.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.Math 1 M4 Lesson 9: Rotations of the Plane

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Expressing Geometric Properties with Equations

Use coordinates to prove simple geometric theorems algebraically.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSG-GPE.B.4	Math 1 M2 Lesson 4: Proving Conditional Statements
Use coordinates to prove simple geometric theorems algebraically. Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically HSG-GPE.B.5 and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). Math 1 M2 Lesson 6: Proving the Parallel Criterion HSG-GPE.B.7 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.\quad Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically	

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSS-ID.A. 1
Represent data with plots on the real
number line (dot plots, histograms, and
box plots).
HSS-ID.A. 2
Use statistics appropriate to the shape
of the data distribution to compare
center (median, mean) and spread
(interquartile range, standard deviation)
of two or more different data sets.
HSS-ID.A. 3
Interpret differences in shape, center, and
spread in the context of the data sets,
accounting for possible effects of extreme
data points (outliers).

Math 1 | Michigan Mathematics Standards Correlation to Eureka Math²

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSS-ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

HSS-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

HSS-ID.B.6.a

Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

HSS-ID.B.6.b

Informally assess the fit of a function by plotting and analyzing residuals.

Math 1 M6 Topic B: Modeling with Categorical Data

Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 11: A Vanishing Sea

Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
Math 1 M2 Lesson 26: Analyzing Residuals
Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Math 1 M6 Lesson 3: Analyzing Paint Splatters

Michigan Mathematics Standards	Aligned Components of Eureka Math²
HSS-ID.B.6.c Fit a linear function for a scatter plot that suggests a linear association.	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 25: Calculating and Analyzing Residuals Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
Interpreting Categorical and Quantitative Data Interpret linear models. Michigan Mathematics Standards Aligned Components of Eureka Math ${ }^{2}$	
HSS-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data Math 1 M2 Lesson 24: Modeling Relationships with a Line Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
HSS-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
HSS-ID.C. 9 Distinguish between correlation and causation.	Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

