Algebra || Michigan Mathematics Standards Correlation to Eureka Math ${ }^{2 ®}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used $\mathrm{K}-5$ mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

The Real Number System

Extend the properties of exponents to rational exponents.

Michigan Mathematics Standards

HSN-RN.A. 1

Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

HSN-RN.A. 2

Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Aligned Components of Eureka Math ${ }^{2}$
A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

A1 M5 Lesson 9: Unit Fraction Exponents
A1 M5 Lesson 10: Rational Exponents

The Real Number System

Use properties of rational and irrational numbers.

Michigan Mathematics Standards

HSN-RN.B. 3

Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and
an irrational number is irrational.

Aligned Components of Eureka Math ${ }^{2}$
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 17: Rewriting Square Roots

Quantities

Reason quantitatively and use units to solve problems.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSN-Q.A. 1

Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

HSN-Q.A. 2
Define appropriate quantities for the purpose of descriptive modeling.

HSN-Q.A. 3

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

A1 M6 Lesson 5: Solar System Models

A1 M4 Lesson 25: Maximizing Area
A1 M6 Lesson 5: Solar System Models

A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions Interpret the structure of expressions.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSA-SSE.A. 1

Interpret expressions that represent a quantity in terms of its context.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-SSE.A.1.a

Interpret parts of an expression, such as terms, factors, and coefficients.

HSA-SSE.A.1.b

Interpret complicated expressions by viewing one or more of their parts as a single entity.

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

	A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time	
HSA-SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Use the structure of an expression to identify ways to rewrite it.	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties
	A1 M1 Lesson 3: Polynomial Expressions
	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Topic B: Factoring
	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
	A1 M4 Lesson 15: Deriving the Quadratic Formula
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 18: Modeling Populations

Seeing Structure in Expressions

Write expressions in equivalent forms to solve problems.

Michigan Mathematics Standards
 Aligned Components of Eureka Math ${ }^{2}$

HSA-SSE.B. 3

Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

HSA-SSE.B.3.C

Use the properties of exponents to transform expressions for exponential functions.

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Arithmetic with Polynomials and Rational Expressions Perform arithmetic operations on polynomials.

Michigan Mathematics Standards

HSA-APR.A. 1

Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Aligned Components of Eureka Math ${ }^{2}$

A1 M1 Lesson 3: Polynomial Expressions
A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
A1 M1 Lesson 5: Multiplying Polynomial Expressions
A1 M1 Lesson 6: Polynomial Identities

Creating Equations

Create equations that describe numbers or relationships.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSA-CED.A. 1

Create equations and inequalities in one variable and use them to solve problems.

HSA-CED.A. 2

Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1 M2 Lesson 3: Creating Linear Equations in Two Variables
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

Michigan Mathematics Standards	
HSA-CED.A. 2 continued	A1 M4 Lesson 25: Maximizing Area Components of Eureka Math ${ }^{2}$
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
HSA-CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context.	A1 M1 Lesson 14: Solution Sets of Compound Statements
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities	
A1 M2 Lesson 6: Applications of Linear Equations and Inequalities	
A1 M6 Lesson 5: Solar System Models	
HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.	A1 M6 Lesson 6: Designing a Fundraiser

Reasoning with Equations and Inequalities

Understand solving equations as a process of reasoning and explain the reasoning.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-REI.A. 1

Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.

A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable

Reasoning with Equations and Inequalities
 Solve equations and inequalities in one variable.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSA-REI.B. 3

Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A1 M1 Lesson 7: Printing Presses
A1 M1 Lesson 8: Solution Sets for Equations and Inequalities in One Variable
A1 M1 Lesson 9: Solving Linear Equations in One Variable
A1 M1 Lesson 10: Some Potential Dangers When Solving Equations
A1 M1 Lesson 11: Writing and Solving Equations in One Variable
A1 M1 Lesson 13: Solving Linear Inequalities in One Variable
A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
A1 M1 Lesson 16: Solving Absolute Value Equations
A1 M1 Lesson 17: Solving Absolute Value Inequalities

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula

Michigan Mathematics Standards

HSA-REI.B.4.b

Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b.

Aligned Components of Eureka Math ${ }^{2}$

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions
A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check
A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term
A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring
A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable
A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square
A1 M4 Lesson 15: Deriving the Quadratic Formula
A1 M4 Lesson 16: Solving Quadratic Equations
A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function
Supplemental material is necessary to address complex solutions.

Reasoning with Equations and Inequalities

Solve systems of equations.

Michigan Mathematics Standards

HSA-REI.C. 5

Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.

Aligned Components of Eureka Math²

A1 M2 Lesson 9: A New Way to Solve Systems

Michigan Mathematics Standards	
HSA-REI.C. 6	Aligned Components of Eureka Math ${ }^{2}$
Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	A1 M2 Lesson 8: Systems of Linear Equations in Two Variables
A1 M2 Lesson 9: A New Way to Solve Systems	
HSA-REl.C.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically.	A1 M2 Lesson 10: The Elimination Method

Reasoning with Equations and Inequalities

Represent and solve equations and inequalities graphically.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSA-REI.D. 10

Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).

A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
A1 M2 Lesson 2: Graphing Linear Equations in Two Variables

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSA-REI.D. 11

Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.

HSA-REI.D. 12

Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

A1 M3 Lesson 10: Using Graphs to Solve Equations
A1 M3 Lesson 15: The Absolute Value Function
A1 M4 Lesson 24: Another Look at Systems of Equations
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 20: Comparing Growth of Functions

A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables
A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities
A1 M2 Lesson 14: Applications of Systems of Linear Inequalities
A1 M6 Lesson 6: Designing a Fundraiser

Interpreting Functions

Understand the concept of a function and use function notation.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSF-IF.A. 1

Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.

HSF-IF.A. 2

Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

A1 M3 Lesson 1: The Definition of a Function
A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
A1 M3 Lesson 6: Representations of Functions
A1 M3 Lesson 16: Step Functions
A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 7: Sierpinski Triangle

A1 M5 Lesson 1: Exploring Patterns
A1 M5 Lesson 2: The Recursive Challenge
A1 M5 Lesson 3: Recursive Formulas for Sequences
A1 M5 Lesson 4: Explicit Formulas for Sequences
A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences

Interpreting Functions

Interpret functions that arise in applications in terms of the context.

Michigan Mathematics Standards

HSF-IF.B. 4

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

```
A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph
A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph
A1 M3 Lesson 9: Representing Functions from Verbal Descriptions
A1 M3 Lesson 11: Comparing Functions
A1 M3 Lesson 12: Mars Curiosity Rover
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M3 Lesson 3: The Graph of a Function
A1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1 M3 Lesson 16: Step Functions
A1 M4 Lesson 2: Projectile Motion
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
```


Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.B. 6

Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.

A1 M4 Lesson 1: Falling Objects
A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 20: Comparing Growth of Functions
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

Analyze functions using different representations.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.C. 7

Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

HSF-IF.C.7.a

Graph linear and quadratic functions and show intercepts, maxima, and minima.

This standard is addressed by the lessons aligned to its subsections.

A1 M3 Lesson 4: The Graph of the Equation $y=f(x)$
A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions

A1 M4 Lesson 4: Graphs of Quadratic Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 24: Another Look at Systems of Equations

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSF-IF.C.7.b

Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

A1 M3 Topic C: Piecewise-Defined Linear Functions
A1 M3 Lesson 19: Building New Functions-Translations
A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
Supplemental material is necessary to address graphing cube root functions.

HSF-IF.C.7.e

Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

A1 M5 Lesson 11: Graphing Exponential Functions

A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Supplemental material is necessary to address graphing logarithmic functions.

HSF-IF.C. 8

Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

HSF-IF.C.8.a

Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

HSF-IF.C.8.b

Use the properties of exponents to interpret expressions for exponential functions.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-IF.C. 9

Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Building Functions

Build a function that models a relationship between two quantities.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-BF.A. 1

Write a function that describes a relationship between two quantities.

HSF-BF.A.1.a

Determine an explicit expression, a recursive process, or steps for calculation from a context.

This standard is fully addressed by the lessons aligned to its subsections.

A1 M3 Lesson 17: Piecewise Linear Functions in Context
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 25: Maximizing Area
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M5 Topic A: Arithmetic and Geometric Sequences
A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 15: Calculating Interest
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-BF.A.1.b

Combine standard function types using arithmetic operations.

A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

A1 M5 Lesson 5: Arithmetic and Geometric Sequences
A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1 M5 Lesson 7: Sierpinski Triangle

HSF-BF.A. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

Building Functions

Build new functions from existing functions.

Michigan Mathematics Standards

HSF-BF.B. 3

Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.

Aligned Components of Eureka Math ${ }^{2}$

A1 M3 Topic D: Transformations of Functions
A1 M4 Lesson 20: Art with Transformations
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear, Quadratic, and Exponential Models

Construct and compare linear, quadratic, and exponential models and solve problems.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.A. 1

Distinguish between situations that can be modeled with linear functions and with exponential functions.

HSF-LE.A.1.a

Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

HSF-LE.A.1.b

Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

HSF-LE.A.1.c

Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population
A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M5 Lesson 19: Analyzing Exponential Growth

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

A1 M5 Lesson 15: Calculating Interest
A1 M5 Lesson 21: World Population Prediction
A1 M5 Lesson 22: A Closer Look at Populations
A1 M5 Lesson 24: Modeling an Invasive Species Population

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.A. 2
Construct linear and exponential
functions, including arithmetic and
geometric sequences, given a graph,
a description of a relationship, or two
input-output pairs (include reading these
from a table).

HSF-LE.A. 3

Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

A1 M5 Lesson 8: Exponential Functions
A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
A1 M5 Lesson 16: Exponential Growth
A1 M5 Lesson 17: Exponential Decay
A1 M5 Topic D: Comparing Linear and Exponential Models
A1 M6 Lesson 4: The Deal
A1 M6 Lesson 7: World Record Doughnut

A1 M5 Lesson 20: Comparing Growth of Functions

Linear, Quadratic, and Exponential Models

Interpret expressions for functions in terms of the situation they model.

Michigan Mathematics Standards
Aligned Components of Eureka Math ${ }^{2}$

HSF-LE.B. 5

Interpret the parameters in a linear or exponential function in terms of a context.

A1 M5 Lesson 18: Modeling Populations
A1 M5 Lesson 19: Analyzing Exponential Growth
A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable.

Michigan Mathematics Standards

Aligned Components of Eureka Math²

HSS-ID.A. 1
Represent data with plots on the real
number line (dot plots, histograms, and
box plots).
HSS-ID.A. 2
Use statistics appropriate to the shape
of the data distribution to compare
center (median, mean) and spread
(interquartile range, standard deviation)
of two or more different data sets.
HSS-ID.A. $\mathbf{3}$
Interpret differences in shape, center, and
spread in the context of the data sets,
accounting for possible effects of extreme
data points (outliers).

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on two categorical and quantitative variables.

Michigan Mathematics Standards

Aligned Components of Eureka Math ${ }^{2}$

HSS-ID.B. 5

Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

HSS-ID.B. 6

Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

HSS-ID.B.6.a

Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

A1 M2 Topic D: Categorical Data on Two Variables

A1 M2 Lesson 15: Relationships Between Quantitative Variables
A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
A1 M2 Lesson 17: Modeling Relationships with a Line
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M4 Lesson 26: Modeling Data with Quadratic Functions
A1 M4 Lesson 27: Search and Rescue Helicopter
A1 M6 Topic A: Modeling Bivariate Quantitative Data

A1 M2 Lesson 18: Calculating and Analyzing Residuals
A1 M2 Lesson 19: Analyzing Residuals
A1 M6 Topic A: Modeling Bivariate Quantitative Data

Michigan Mathematics Standards	Aligned Components of Eureka Math²
HSS-ID.B.6.c Fit a linear function for a scatter plot that suggests a linear association.	A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 18: Calculating and Analyzing Residuals A1 M2 Lesson 20: Interpreting Correlation A1 M6 Topic A: Modeling Bivariate Quantitative Data
Interpreting Categorical and Quantitative Data Interpret linear models. Michigan Mathematics Standards Aligned Components of Eureka Math ${ }^{2}$	
HSS-ID.C. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data A1 M2 Lesson 17: Modeling Relationships with a Line A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
HSS-ID.C. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
HSS-ID.C. 9 Distinguish between correlation and causation.	A1 M2 Lesson 20: Interpreting Correlation A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

