Mathematics I | Missouri Mathematics Learning Standards Correlation to Eureka Math ${ }^{2 \ominus}$

When the original Eureka Math ${ }^{\circledR}$ curriculum was released, it quickly became the most widely used K -5 mathematics curriculum in the country. Now, the Great Minds ${ }^{\circledR}$ teacher-writers have created Eureka Math ${ }^{2 ®}$, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. Eureka Math ${ }^{2}$ carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math ${ }^{2}$ employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math ${ }^{2}$ incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of Eureka Math ${ }^{2}$ add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Math 1 | Missouri Mathematics Learning Standards Correlation to Eureka Math²

Standards for Mathematical Practice

Aligned Components of Eureka Math ${ }^{2}$

MP. 1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP. 8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Number and Quantity

A1.NQ.B Use units to solve problems.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.NQ.B. 3 Use units of measure as a way to understand and solve problems involving quantities.	Math 1 M1 Lesson 1: A Powerful Trio
	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.a Identify, label and use appropriate units of measure within a problem.	Math 1 M1 Lesson 1: A Powerful Trio
	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.C Use units within problems.	Math 1 M1 Lesson 1: A Powerful Trio
	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.d Choose and interpret the scale and the origin in graphs and data displays.	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

Math 1 M1 Lesson 1: A Powerful Trio
Math 1 M3 Lesson 14: Comparing Models for Situations
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 10: Designing a Fundraiser

Math 1 M6 Lesson 9: Solar System Models
Math 1 M6 Lesson 11: A Vanishing Sea

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Seeing Structure in Expressions

A1.SSE.A Interpret and use structure.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.SSE.A. 1

Interpret the contextual meaning of individual terms or factors from a given problem that utilizes formulas or expressions.

[^0]
Creating Equations

A1.CED.A Create equations that describe linear, quadratic and exponential relationships.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.CED.A.1	
Create equations and inequalities in one variable and use them to model and/or solve problems.	Math 1 M1 Lesson 5: Printing Presses Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable Math Lesson 11: Solving Linear Inequalities in One Variable Math 1 M1 Lesson 16: Applying Absolute Value
A1.CED.A.2 Create and graph linear, quadratic and exponential equations in two variables.	Math 1 M 2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M 2 Lesson 2: Graphing Linear Equations in Two Variables Math 1 M 2 Lesson 4: Proving Conditional Statements Math 1 M 2 Lesson 5: Proving Biconditional Statements Math 1 M 2 Lesson 8: Low-Flow Showerhead Math 1 M 2 Lesson 12: Applications of Systems of Equations Math 1 M 4 Lesson 5: Proving the Perpendicular Criterion Math 1 M 5 Topic B: Exponential Functions and Their Graphs Math 1 M 5 Lesson 13: Calculating Interest Math 1 M 5 Lesson 14: Exponential Growth Math 1 M 5 Lesson 15: Exponential Decay Math 1 M 5 Lesson 16: Modeling Populations Math 1 M 5 Topic D: Comparing Linear and Exponential Models Supplemental material is necessary to address quadratic equations for this standard.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.CED.A.3	
Represent constraints by equations or inequalities and by systems of equations or inequalities, and interpret the data points as a solution or non-solution in a modeling context.	Math 1 M 1 Lesson 9: Writing and Solving Equations in One Variable Math 1 M 1 Lesson 12: Solution Sets of Compound Statements Math 1 M 1 Lesson 13: Solving and Graphing Compound Inequalities Math 1 M 1 Lesson 16: Applying Absolute Value Math 1 M 2 Lesson 1: Solution Sets of Linear Equations in Two Variables Math 1 M 2 Lesson 18: Applications of Systems of Linear Inequalities Math 1 M 6 Lesson 10: Designing a Fundraiser
A1.CED.A.4 Solve literal equations and formulas for a specified variable that highlights a quantity of interest.	Math 1 M 1 Lesson 10: Rearranging Formulas

Reasoning with Equations and Inequalities

A1.REI.A Understand solving equations as a process, and solve equations and inequalities in one variable.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.REI.A. 1

Explain how each step taken when solving an equation or inequality in one variable creates an equivalent equation or inequality that has the same solution(s) as the original.

Reasoning with Equations and Inequalities A1.REI.B Solve systems of equations.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.REI.B. 3

Solve a system of linear equations algebraically and/or graphically.

A1.REI.B. 5

Justify that the technique of linear combination produces an equivalent system of equations.

```
Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Math 1 M1 Lesson 5: Printing Presses
Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
Math 1 M1 Lesson 14: Solving Absolute Value Equations
Math 1 M1 Lesson 15: Solving Absolute Value Inequalities
```

Math 1 M2 Topic B: Systems of Linear Equations in Two Variables

Math 1 M2 Lesson 10: A New Way to Solve Systems

Reasoning with Equations and Inequalities

A1.REI.C Represent and solve linear and exponential equations and inequalities graphically.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.REI.C. 6	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Explain that the graph of an equation in two variables is the set of all its solutions plotted in the Cartesian coordinate plane.	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
	Math 1 M3 Lesson 10: Using Graphs to Solve Equations
	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
	Math 1 M5 Lesson 19: Comparing Growth of Functions
A1.REI.C. 7	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Graph the solution to a linear inequality in two variables.	Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
	Math 1 M6 Lesson 10: Designing a Fundraiser
A1.REI.C. 8	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Solve problems involving a system of linear inequalities.	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

A1.IF.A Understand the concept of a function and use function notation.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math²

A1.IF.A. 1

Understand that a function from one set (domain) to another set (range) assigns to each element of the domain exactly one element of the range.

[^1]
Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math²

A1.IF.A.1.a \quad Math 1 M3 Topic A: Functions and Their Graphs

Represent a function using function notation.

A1.IF.A.1.b

Understand that the graph of a function labeled f is the set of all ordered pairs (x, y) that satisfy the equation $y=f(x)$.

A1.IF.A. 2

Use function notation to evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Math 1 M3 Topic A: Functions and Their Graphs

Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 1: Exploring Patterns
Math 1 M5 Lesson 2: The Recursive Challenge
Math 1 M5 Lesson 3: Recursive Formulas for Sequences
Math 1 M5 Lesson 4: Explicit Formulas for Sequences

Interpreting Functions

A1.IF.B Interpret linear, quadratic and exponential functions in terms of the context.

Missouri Mathematics
 Learning Standards
 Aligned Components of Eureka Math ${ }^{2}$

A1.IF.B.3	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Using tables, graphs and verbal descriptions, interpret key characteristics of a function that models the relationship between two quantities.	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph Math 1 M3 Lesson 11: Comparing Functions Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1.IF.B.4	Math 1 M3 Lesson 15: Mars Curiosity Rover
Relate the domain and range of a function to its graph and, where applicable, to the quantitative relationship it describes.	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time

Interpreting Functions

A1.IF.C Analyze linear, quadratic and exponential functions using different representations.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.IF.C. 7

Graph functions expressed symbolically and identify and interpret key features of the graph.

Math 1 M3 Lesson 5: The Graph of the Equation $y=f(x)$
Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
Math 1 M3 Lesson 7: Representations of Functions
Math 1 M5 Lesson 8: Graphing Exponential Functions
Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
Math 1 M3 Lesson 11: Comparing Functions

Compare the properties of two functions given different representations.

Building Functions

A1.BF.A Build new functions from existing functions (limited to linear, quadratic and exponential).

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.BF.A. 1

Analyze the effect of translations and scale changes on functions.

Math 1 M3 Topic D: Transformations of Functions

Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Linear, Quadratic and Exponential Models

A1.LQE.A Construct and compare linear, quadratic and exponential models and solve problems.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LQE.A.1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can be modeled with linear or exponential functions.	Math 1 M5 Lesson 16: Modeling Populations Math 1 M5 Lesson 20: World Population Prediction Math 1 M5 Lesson 21: A Closer Look at Populations Math 1 M5 Lesson 23: Modeling an Invasive Species Population Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters A1.LQE.A.1.a
Determine that linear functions change 1 M6 Lesson 11: A Vanishing Sea by equal differences over equal intervals.	Math 1 M5 Lesson 18: Analyzing Exponential Growth
A1.LQE.A.1.b	
Recognize exponential situations in which	
a quantity grows or decays by a constant	
percent rate per unit interval.	Math 1 M5 Lesson 21: A Closer Look at Populations
A1.LQE.A.2 Describe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.	Supplemental material is necessary to address quadratic models for this standard.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LQE.A. 3

Construct linear, quadratic and exponential equations given graphs, verbal descriptions or tables.

Math 1 M5 Lesson 7: Exponential Functions
Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
Math 1 M5 Lesson 14: Exponential Growth

Math 1 M5 Lesson 15: Exponential Decay
Math 1 M5 Topic D: Comparing Linear and Exponential Models
Math 1 M6 Lesson 3: Analyzing Paint Splatters
Math 1 M6 Lesson 8: The Deal
Math 1 M6 Lesson 9: Solar System Models
Supplemental material is necessary to address quadratic equations for this standard.

Linear, Quadratic and Exponential Models

A1.LQE.B Use arithmetic and geometric sequences.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.LQE.B. 4

Write arithmetic and geometric sequences in recursive and explicit forms, and use them to model situations and translate between the two forms.

A1.LQE.B. 5

Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the set of integers.

Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences
Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
Math 1 M6 Lesson 8: The Deal

Math 1 M5 Topic A: Arithmetic and Geometric Sequences

Data and Statistical Analysis

A1.DS.A Summarize, represent and interpret data.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.DS.A.1 Analyze and interpret graphical displays of data.	Math 1 M1 Lesson 17: Distributions and Their Shapes Math 1 M1 Lesson 18: Describing the Center of a Distribution Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
A1.DS.A.2 Use statistics appropriate to the shape of the data distribution to compare center and spread of two or more different data sets.	Math 1 M1 Topic D: Univariate Data
A1.DS.A.3 Lesson 1: Using Data to Edit Digital Photography	
Interpret differences in shape, center and spreads in the context of the data sets, accounting for possible effects of outliers.	Math 1 M1 Topic D: Univariate Data
A1.DS.A.4	
Summarize data in two-way frequency tables.	Math 1 M6 Topic B: Modeling with Categorical Data
A1.DS.A.4.a	
Interpret relative frequencies in the	
context of the data.	

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

\section*{| A1.DS.A.4.b | Math 1 M6 Topic B: Modeling with Categorical Data |
| :--- | :--- |}

Recognize possible associations and trends in the data.

A1.DS.A. 5

Construct a scatter plot of bivariate quantitative data describing how the variables are related; determine and use a function that models the relationship.

A1.DS.A.5.a

Construct a linear function to model bivariate data represented on a scatter plot that minimizes residuals.

	Math 1 M2 Lesson 26: Analyzing Residuals Math 1 M2 Lesson 27: Interpreting Correlation Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters Math 1 M6 Lesson 11: A Vanishing Sea
A1.DS.A.5.b Construct an exponential function to model bivariate data represented on a scatter plot that minimizes residuals.	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data Math 1 M6 Lesson 3: Analyzing Paint Splatters

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

A1.DS.A. 6	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and	Math 1 M2 Lesson 24: Modeling Relationships with a Line
the y-intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.DS.A. 7	Math 1 M2 Lesson 27: Interpreting Correlation
Determine and interpret the correlation coefficient for a linear association.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.DS.A. 8	Math 1 M 2 Lesson 27: Interpreting Correlation
Distinguish between correlation and causation.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Congruence

G.CO.A Experiment with transformations in the plane.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

G.CO.A. 1

Define angle, circle, perpendicular line, parallel line, line segment and ray based on the undefined notions of point, line, distance along a line and distance around a circular arc.

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

G.CO.A. 2 Math 1 M4 Lesson 1: Geometric Transformations

Represent transformations in the plane, and describe them as functions that take points in the plane as inputs and give other points as outputs.

G.CO.A. 3

Describe the rotational symmetry and lines of symmetry of two-dimensional figures.

G.CO.A. 4

Develop definitions of rotations, reflections and translations in terms of angles, circles, perpendicular lines, parallel lines and line segments.

Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles Math 1 M4 Lesson 11: Translations of the Plane

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math ${ }^{2}$

G.CO.A. 5

Demonstrate the ability to rotate, reflect or translate a figure, and determine a possible sequence of transformations between two congruent figures.

Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions
Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 15: Designs with Rigid Motions
Math 1 M4 Lesson 16: Congruent Figures

Congruence

G.CO.B Understand congruence in terms of rigid motions.

Missouri Mathematics
 Learning Standards

Aligned Components of Eureka Math²

G.CO.B. 6

Develop the definition of congruence in terms of rigid motions.

G.CO.B. 7

Develop the criteria for triangle congruence from the definition of congruence in terms of rigid motions.

Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Math 1 M4 Lesson 16: Congruent Figures
Math 1 M4 Lesson 17: Congruent Triangles

Math 1 M4 Lesson 18: Side-Angle-Side
Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side
Math 1 M4 Lesson 20: Angle-Side-Angle
Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

G.CO.D Make geometric constructions.

Missouri Mathematics
 Learning Standards
 Aligned Components of Eureka Math ${ }^{2}$

G.CO.D. 11

Construct geometric figures using various tools and methods.

Math 1 M4 Topic B: Transformations of the Plane Without Coordinates
Math 1 M4 Topic E: Validating Constructions

Exploring Geometric Properties with Equations

G.GPE.B Use coordinates to prove geometric theorems algebraically.

Missouri Mathematics
Learning Standards
Aligned Components of Eureka Math ${ }^{2}$

G.GPE.B.3	Math 1 M2 Lesson 4: Proving Conditional Statements
Use coordinates to prove geometric theorems algebraically.	Math 1 M2 Lesson 5: Proving Biconditional Statements Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 19: The Distance Formula Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
G.GPE.B.4 Prove the slope criteria for parallel and perpendicular lines and use them to solve problems.	Math 1 M2 Lesson 6: Proving the Parallel Criterion Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines Math 1 M 4 Lesson 5: Proving the Perpendicular Criterion 20: Proving Geometric Theorems Algebraically
G.GPE.B.6 Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.	Math 1 M 6 Lesson 11: A Vanishing Sea

[^0]: Math 1 M1 Lesson 4: Interpreting Linear Expressions
 Math 1 M5 Lesson 7: Exponential Functions
 Math 1 M5 Lesson 14: Exponential Growth
 Math 1 M5 Lesson 15: Exponential Decay
 Math 1 M5 Lesson 16: Modeling Populations
 Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

[^1]: Math 1 M3 Topic A: Functions and Their Graphs

