EUREKA MATH².

Mathematics I | Missouri Mathematics Learning Standards Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason abstractly and quantitatively.	These are indicated in margin notes included with every lesson.
MP.3	Lessons in every module engage students in mathematical practices.
Construct viable arguments and critique the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Model with mathematics.	These are indicated in margin notes included with every lesson.
MP.5	Lessons in every module engage students in mathematical practices.
Use appropriate tools strategically.	These are indicated in margin notes included with every lesson.
MP.6	Lessons in every module engage students in mathematical practices.
Attend to precision.	These are indicated in margin notes included with every lesson.
MP.7	Lessons in every module engage students in mathematical practices.
Look for and make use of structure.	These are indicated in margin notes included with every lesson.
MP.8	Lessons in every module engage students in mathematical practices.
Look for and express regularity in repeated reasoning.	These are indicated in margin notes included with every lesson.

Number and Quantity

A1.NQ.B Use units to solve problems.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.NQ.B.3	Math 1 M1 Lesson 1: A Powerful Trio
Use units of measure as a way	Math 1 M3 Lesson 14: Comparing Models for Situations
to understand and solve problems involving quantities.	Math 1 M6 Lesson 9: Solar System Models
involving quantities.	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.a	Math 1 M1 Lesson 1: A Powerful Trio
Identify, label and use appropriate units	Math 1 M3 Lesson 14: Comparing Models for Situations
of measure within a problem.	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.c	Math 1 M1 Lesson 1: A Powerful Trio
Use units within problems.	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.NQ.B.3.d	Math 1 M3 Lesson 14: Comparing Models for Situations
Choose and interpret the scale and the	Math 1 M6 Lesson 9: Solar System Models
origin in graphs and data displays.	Math 1 M6 Lesson 10: Designing a Fundraiser
	Math 1 M6 Lesson 11: A Vanishing Sea

Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.NQ.B.4	Math 1 M1 Lesson 1: A Powerful Trio
Define and use appropriate quantities for representing a given context or problem.	Math 1 M3 Lesson 14: Comparing Models for Situations
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 9: Solar System Models
	Math 1 M6 Lesson 10: Designing a Fundraiser
A1.NQ.B.5	Math 1 M6 Lesson 9: Solar System Models
Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	Math 1 M6 Lesson 11: A Vanishing Sea

Seeing Structure in Expressions

Missouri Mathematics

A1.SSE.A Interpret and use structure.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.SSE.A.1	Math 1 M1 Lesson 4: Interpreting Linear Expressions
Interpret the contextual meaning	Math 1 M5 Lesson 7: Exponential Functions
of individual terms or factors from	Math 1 M5 Lesson 14: Exponential Growth
a given problem that utilizes formulas or expressions.	Math 1 M5 Lesson 15: Exponential Decay
	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time

Creating Equations

A1.CED.A Create equations that describe linear, quadratic and exponential relationships.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.CED.A.1	Math 1 M1 Lesson 5: Printing Presses
Create equations and inequalities in one	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
variable and use them to model and/or solve problems.	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
solve problems.	Math 1 M1 Lesson 16: Applying Absolute Value
A1.CED.A.2	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Create and graph linear, quadratic and	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
exponential equations in two variables.	Math 1 M2 Lesson 3: Creating Linear Equations in Two Variables
	Math 1 M2 Lesson 4: Proving Conditional Statements
	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 8: Low-Flow Showerhead
	Math 1 M2 Lesson 12: Applications of Systems of Equations
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
	Math 1 M5 Topic B: Exponential Functions and Their Graphs
	Math 1 M5 Lesson 13: Calculating Interest
	Math 1 M5 Lesson 14: Exponential Growth
	Math 1 M5 Lesson 15: Exponential Decay
	Math 1 M5 Lesson 16: Modeling Populations
	Math 1 M5 Topic D: Comparing Linear and Exponential Models
	Supplemental material is necessary to address quadratic equations for this standard.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.CED.A.3	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
Represent constraints by equations	Math 1 M1 Lesson 12: Solution Sets of Compound Statements
or inequalities and by systems	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
of equations or inequalities, and interpret the data points as a solution or non-solution in a modeling context.	Math 1 M1 Lesson 16: Applying Absolute Value
	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
	Math 1 M2 Lesson 15: Applications of Linear Inequalities
	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser
A1.CED.A.4	Math 1 M1 Lesson 10: Rearranging Formulas
Solve literal equations and formulas for a specified variable that highlights a quantity of interest.	

Reasoning with Equations and Inequalities

A1.REI.A Understand solving equations as a process, and solve equations and inequalities in one variable.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.REI.A.1	Math 1 M1 Lesson 3: The Commutative, Associative, and Distributive Properties
Explain how each step taken when	Math 1 M1 Lesson 5: Printing Presses
solving an equation or inequality in one variable creates an equivalent equation	Math 1 M1 Lesson 6: Solution Sets of Equations and Inequalities in One Variable
or inequality that has the same solution(s)	Math 1 M1 Lesson 7: Solving Linear Equations in One Variable
as the original.	Math 1 M1 Lesson 8: Some Potential Dangers When Solving Equations
	Math 1 M1 Lesson 9: Writing and Solving Equations in One Variable
	Math 1 M1 Lesson 11: Solving Linear Inequalities in One Variable
	Math 1 M1 Lesson 13: Solving and Graphing Compound Inequalities
	Math 1 M1 Lesson 14: Solving Absolute Value Equations
	Math 1 M1 Lesson 15: Solving Absolute Value Inequalities

Reasoning with Equations and Inequalities

A1.REI.B Solve systems of equations.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.REI.B.3	Math 1 M2 Topic B: Systems of Linear Equations in Two Variables
Solve a system of linear equations algebraically and/or graphically.	
A1.REI.B.5	Math 1 M2 Lesson 10: A New Way to Solve Systems
Justify that the technique of linear combination produces an equivalent system of equations.	

Reasoning with Equations and Inequalities

Missouri Mathematics

A1.REI.C Represent and solve linear and exponential equations and inequalities graphically.

Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.REI.C.6	Math 1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
Explain that the graph of an equation in	Math 1 M2 Lesson 2: Graphing Linear Equations in Two Variables
two variables is the set of all its solutions	Math 1 M3 Lesson 10: Using Graphs to Solve Equations
plotted in the Cartesian coordinate plane.	Math 1 M5 Lesson 11: Solving Equations Containing Exponential Expressions
	Math 1 M5 Lesson 19: Comparing Growth of Functions
A1.REI.C.7	Math 1 M2 Lesson 13: Solution Sets of Linear Inequalities in Two Variables
Graph the solution to a linear inequality in two variables.	Math 1 M2 Lesson 14: Graphing Linear Inequalities in Two Variables
	Math 1 M6 Lesson 10: Designing a Fundraiser
A1.REI.C.8	Math 1 M2 Lesson 16: Solution Sets of Systems of Linear Inequalities
Solve problems involving a system of linear inequalities.	Math 1 M2 Lesson 17: Graphing Solution Sets of Systems of Linear Inequalities
	Math 1 M2 Lesson 18: Applications of Systems of Linear Inequalities
	Math 1 M6 Lesson 10: Designing a Fundraiser

Interpreting Functions

A1.IF.A Understand the concept of a function and use function notation.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.IF.A.1	Math 1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (domain) to another set (range) assigns to each element of the domain exactly one element of the range.	

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.IF.A.1.a	Math 1 M3 Topic A: Functions and Their Graphs
Represent a function using function notation.	
A1.IF.A.1.b	Math 1 M3 Topic A: Functions and Their Graphs
Understand that the graph of a function labeled f is the set of all ordered pairs (x, y) that satisfy the equation $y = f(x)$.	
A1.IF.A.2	Math 1 M3 Lesson 2: Interpreting and Using Function Notation
Use function notation to evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	Math 1 M3 Lesson 3: Representing, Naming, and Evaluating Functions
	Math 1 M3 Lesson 7: Representations of Functions
	Math 1 M5 Lesson 1: Exploring Patterns
	Math 1 M5 Lesson 2: The Recursive Challenge
	Math 1 M5 Lesson 3: Recursive Formulas for Sequences
	Math 1 M5 Lesson 4: Explicit Formulas for Sequences

@ 2023 Great Minds PBC | greatminds.org

Interpreting Functions

A1.IF.B Interpret linear, quadratic and exponential functions in terms of the context.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.IF.B.3	Math 1 M3 Lesson 8: Exploring Key Features of a Function and Its Graph
Using tables, graphs and verbal	Math 1 M3 Lesson 9: Identifying Key Features of a Function and Its Graph
descriptions, interpret key characteristics of a function that models the relationship	Math 1 M3 Lesson 11: Comparing Functions
between two quantities.	Math 1 M3 Lesson 12: Sketching Graphs of Functions from Verbal Descriptions
	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
	Math 1 M3 Lesson 15: Mars Curiosity Rover
A1.IF.B.4	Math 1 M3 Lesson 4: The Graph of a Function
Relate the domain and range of a function to its graph and, where applicable, to the quantitative relationship it describes.	Math 1 M3 Lesson 13: Modeling Elevation as a Function of Time
A1.IF.B.5	Math 1 M5 Lesson 17: Average Rate of Change
Determine the average rate of change	Math 1 M5 Lesson 18: Analyzing Exponential Growth
of a function over a specified interval and interpret the meaning.	Math 1 M5 Lesson 19: Comparing Growth of Functions
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
A1.IF.B.6	Math 1 M5 Lesson 16: Modeling Populations
Interpret the parameters of a linear or exponential function in terms of the context.	Math 1 M5 Lesson 18: Analyzing Exponential Growth
	Math 1 M5 Lesson 22: Modeling the Temperature of Objects Cooling Over Time
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population

Interpreting Functions

A1.IF.C Analyze linear, quadratic and exponential functions using different representations.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.IF.C.7	Math 1 M3 Lesson 5: The Graph of the Equation $y = f(x)$
Graph functions expressed symbolically and identify and interpret key features of the graph.	Math 1 M3 Lesson 6: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
	Math 1 M3 Lesson 7: Representations of Functions
	Math 1 M5 Lesson 8: Graphing Exponential Functions
	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1.IF.C.9	Math 1 M3 Lesson 11: Comparing Functions
Compare the properties of two functions given different representations.	

Building Functions

A1.BF.A Build new functions from existing functions (limited to linear, quadratic and exponential).

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.BF.A.1	Math 1 M3 Topic D: Transformations of Functions
Analyze the effect of translations and scale changes on functions.	Math 1 M5 Lesson 9: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) Math 1 M5 Lesson 10: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Linear, Quadratic and Exponential Models

Missouri Mathematics

A1.LQE.A Construct and compare linear, quadratic and exponential models and solve problems.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
A1.LQE.A.1	Math 1 M5 Lesson 13: Calculating Interest
Distinguish between situations that can	Math 1 M5 Lesson 16: Modeling Populations
be modeled with linear or exponential functions.	Math 1 M5 Lesson 20: World Population Prediction
	Math 1 M5 Lesson 21: A Closer Look at Populations
	Math 1 M5 Lesson 23: Modeling an Invasive Species Population
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.LQE.A.1.a	Math 1 M5 Lesson 18: Analyzing Exponential Growth
Determine that linear functions change by equal differences over equal intervals.	
A1.LQE.A.1.b	Math 1 M5 Lesson 20: World Population Prediction
Recognize exponential situations in which a quantity grows or decays by a constant percent rate per unit interval.	Math 1 M5 Lesson 21: A Closer Look at Populations
A1.LQE.A.2	Math 1 M5 Lesson 19: Comparing Growth of Functions
Describe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.	Supplemental material is necessary to address quadratic models for this standard.

Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.LQE.A.3	Math 1 M5 Lesson 7: Exponential Functions
Construct linear, quadratic and	Math 1 M5 Lesson 12: Writing Equations for Exponential Functions from Tables or Graphs
exponential equations given graphs, verbal descriptions or tables.	Math 1 M5 Lesson 14: Exponential Growth
verbai descriptions of tables.	Math 1 M5 Lesson 15: Exponential Decay
	Math 1 M5 Topic D: Comparing Linear and Exponential Models
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 8: The Deal
	Math 1 M6 Lesson 9: Solar System Models
	Supplemental material is necessary to address quadratic equations for this standard.

Linear, Quadratic and Exponential Models

A1.LQE.B Use arithmetic and geometric sequences.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.LQE.B.4 Write arithmetic and geometric	Math 1 M5 Lesson 5: Arithmetic and Geometric Sequences Math 1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
sequences in recursive and explicit forms, and use them to model situations and translate between the two forms.	Math 1 M6 Lesson 8: The Deal
A1.LQE.B.5	Math 1 M5 Topic A: Arithmetic and Geometric Sequences
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the set of integers.	

Data and Statistical Analysis

A1.DS.A Summarize, represent and interpret data.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.DS.A.1	Math 1 M1 Lesson 17: Distributions and Their Shapes
Analyze and interpret graphical displays of data.	Math 1 M1 Lesson 18: Describing the Center of a Distribution Math 1 M1 Lesson 19: Using Center to Compare Data Distributions Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
A1.DS.A.2	Math 1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center and spread of two or more different data sets.	Math 1 M6 Lesson 1: Using Data to Edit Digital Photography
A1.DS.A.3 Interpret differences in shape, center and spreads in the context of the data sets, accounting for possible effects of outliers.	Math 1 M1 Topic D: Univariate Data
A1.DS.A.4 Summarize data in two-way frequency tables.	Math 1 M6 Topic B: Modeling with Categorical Data
A1.DS.A.4.a Interpret relative frequencies in the context of the data.	Math 1 M6 Topic B: Modeling with Categorical Data

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.DS.A.4.b	Math 1 M6 Topic B: Modeling with Categorical Data
Recognize possible associations and trends in the data.	
A1.DS.A.5	Math 1 M2 Lesson 22: Relationships Between Quantitative Variables
Construct a scatter plot of bivariate quantitative data describing how the variables are related; determine and use a function that models the relationship.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.DS.A.5.a	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Construct a linear function to model	Math 1 M2 Lesson 24: Modeling Relationships with a Line
bivariate data represented on a scatter plot that minimizes residuals.	Math 1 M2 Lesson 25: Calculating and Analyzing Residuals
plot that minimizes residudis.	Math 1 M2 Lesson 26: Analyzing Residuals
	Math 1 M2 Lesson 27: Interpreting Correlation
	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	Math 1 M6 Lesson 3: Analyzing Paint Splatters
	Math 1 M6 Lesson 11: A Vanishing Sea
A1.DS.A.5.b	Math 1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Construct an exponential function	Math 1 M6 Lesson 3: Analyzing Paint Splatters
to model bivariate data represented on a scatter plot that minimizes residuals.	Math 1 M6 Lesson 11: A Vanishing Sea

Learning Standards	Aligned Components of <i>Eureka Math</i> ²
A1.DS.A.6	Math 1 M2 Lesson 23: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and	Math 1 M2 Lesson 24: Modeling Relationships with a Line
the <i>y</i> -intercept (constant term) of a linear model in the context of the data.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.DS.A.7	Math 1 M2 Lesson 27: Interpreting Correlation
Determine and interpret the correlation coefficient for a linear association.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data
A1.DS.A.8	Math 1 M2 Lesson 27: Interpreting Correlation
Distinguish between correlation and causation.	Math 1 M2 Lesson 28: Analyzing Bivariate Quantitative Data

Congruence

G.CO.A Experiment with transformations in the plane.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
G.CO.A.1	Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Define angle, circle, perpendicular line, parallel line, line segment and ray based on the undefined notions of point, line, distance along a line and distance around a circular arc.	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane Math 1 M4 Lesson 5: Proving the Perpendicular Criterion

Aligned Components of <i>Eureka Math</i> ²
Math 1 M4 Lesson 1: Geometric Transformations
Math 1 M4 Lesson 12: Reflective Symmetry and Rotational Symmetry
Math 1 M4 Lesson 2: Translations of the Coordinate Plane
Math 1 M4 Lesson 3: Rotations of the Coordinate Plane
Math 1 M4 Lesson 4: Reflections of the Coordinate Plane
Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
Math 1 M4 Lesson 8: Reflections of the Plane
Math 1 M4 Lesson 9: Rotations of the Plane
Math 1 M4 Lesson 10: Rotations of the Plane with Bisected and Copied Angles
Math 1 M4 Lesson 11: Translations of the Plane

Aligned Components of Eureka Math²

Learning Standards	Aligned Components of Eureka Math ²	
G.CO.A.5	Math 1 M4 Lesson 2: Translations of the Coordinate Plane	
Demonstrate the ability to rotate, reflect	Math 1 M4 Lesson 3: Rotations of the Coordinate Plane	
or translate a figure, and determine	Math 1 M4 Lesson 4: Reflections of the Coordinate Plane	
a possible sequence of transformations between two congruent figures.	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion	
	Math 1 M4 Lesson 13: Sequences of Basic Rigid Motions	
	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane	
	Math 1 M4 Lesson 15: Designs with Rigid Motions	
	Math 1 M4 Lesson 16: Congruent Figures	

Congruence G.CO.B Understand congruence in terms of rigid motions.

Missouri Mathematics Learning Standards	Aligned Components of <i>Eureka Math</i> ²
G.CO.B.6	Math 1 M4 Lesson 14: Transformations of the Coordinate Plane
Develop the definition of congruence in terms of rigid motions.	Math 1 M4 Lesson 16: Congruent Figures Math 1 M4 Lesson 17: Congruent Triangles
G.CO.B.7	Math 1 M4 Lesson 18: Side-Angle-Side
Develop the criteria for triangle congruence from the definition of congruence in terms of rigid motions.	Math 1 M4 Lesson 19: Angle-Angle-Angle and Side-Side-Side Math 1 M4 Lesson 20: Angle-Side-Angle
	Math 1 M4 Lesson 21: Side-Side-Angle and Hypotenuse-Leg

Congruence

G.CO.D Make geometric constructions.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
G.CO.D.11	Math 1 M4 Topic B: Transformations of the Plane Without Coordinates
Construct geometric figures using various tools and methods.	Math 1 M4 Topic E: Validating Constructions

Exploring Geometric Properties with Equations

G.GPE.B Use coordinates to prove geometric theorems algebraically.

Missouri Mathematics Learning Standards	Aligned Components of Eureka Math ²
G.GPE.B.3	Math 1 M2 Lesson 4: Proving Conditional Statements
Use coordinates to prove geometric theorems algebraically.	Math 1 M2 Lesson 5: Proving Biconditional Statements
	Math 1 M2 Lesson 6: Proving the Parallel Criterion
	Math 1 M2 Lesson 19: The Distance Formula
	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
G.GPE.B.4	Math 1 M2 Lesson 6: Proving the Parallel Criterion
Prove the slope criteria for parallel and perpendicular lines and use them to solve problems.	Math 1 M2 Lesson 7: Equations of Parallel and Perpendicular Lines
	Math 1 M2 Lesson 20: Proving Geometric Theorems Algebraically
	Math 1 M4 Lesson 5: Proving the Perpendicular Criterion
G.GPE.B.6	Math 1 M2 Lesson 21: Using Coordinates to Determine Perimeters and Areas of Figures
Use coordinates to compute perimeters of polygons and areas of triangles and rectangles.	Math 1 M6 Lesson 11: A Vanishing Sea