

Algebra I | Missouri Mathematics Learning Standards Correlation to Eureka Math^{2®}

When the original *Eureka Math*® curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds® teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment—a principle tested and proven to be essential in students' mastery of math—from kindergarten through high school.

While this innovative new curriculum includes all the trademark Eureka Math aha moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

Eureka Math² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering high-quality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

Eureka Math² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the Teach book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the Eureka Math² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Standards for Mathematical Practice

Aligned Components of Eureka Math²

MP.1 Make sense of problems and persevere in solving them.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.2 Reason abstractly and quantitatively.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.3 Construct viable arguments and critique the reasoning of others.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.4 Model with mathematics.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.5 Use appropriate tools strategically.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.6 Attend to precision.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.7 Look for and make use of structure.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.8 Look for and express regularity in repeated reasoning.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Number and Quantity

A1.NQ.A Extend and use properties of rational exponents.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.NQ.A.1	A1 M5 Lesson 9: Unit Fraction Exponents
Explain how the meaning of rational exponents extends from the properties of integer exponents.	A1 M5 Lesson 10: Rational Exponents
A1.NQ.A.2	A1 M5 Lesson 9: Unit Fraction Exponents
Rewrite expressions involving radicals and rational exponents using the properties of exponents. Limit to rational exponents with a numerator of 1.	A1 M5 Lesson 10: Rational Exponents

Number and Quantity

A1.NQ.B Use units to solve problems.

Missouri Mathematics Learning Standards

Aligned Components of *Eureka Math*²

A1.NQ.B.3	A1 M6 Lesson 5: Solar System Models
Use units of measure as a way to understand and solve problems involving quantities.	
A1.NQ.B.3.a	A1 M6 Lesson 5: Solar System Models
Identify, label and use appropriate units of measure within a problem.	

Aligned Components of Eureka Math²

A1.NQ.B.3.b Convert units and rates.	Supplemental material is necessary to address this standard.
A1.NQ.B.3.c Use units within problems.	A1 M6 Lesson 5: Solar System Models
A1.NQ.B.3.d Choose and interpret the scale and the origin in graphs and data displays.	A1 M6 Lesson 5: Solar System Models
A1.NQ.B.4 Define and use appropriate quantities for representing a given context or problem.	A1 M4 Lesson 25: Maximizing Area A1 M6 Lesson 5: Solar System Models
A1.NQ.B.5 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	A1 M6 Lesson 5: Solar System Models

Seeing Structure in Expressions

A1.SSE.A Interpret and use structure.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.SSE.A.1 Interpret the contextual meaning of individual terms or factors from a given problem that utilizes formulas or expressions.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M5 Lesson 8: Exponential Functions A1 M5 Lesson 16: Exponential Growth A1 M5 Lesson 17: Exponential Decay A1 M5 Lesson 18: Modeling Populations A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
A1.SSE.A.2	A1 M1 Lesson 1: The Growing Pattern of Ducks
Analyze the structure of polynomials to create equivalent expressions or equations.	A1 M1 Lesson 2: The Commutative, Associative, and Distributive Properties A1 M1 Lesson 3: Polynomial Expressions A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion A1 M4 Topic B: Factoring A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square A1 M4 Lesson 15: Deriving the Quadratic Formula A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 18: Modeling Populations
A1.SSE.A.3	This standard is fully addressed by the lessons aligned to its subsections.
Choose and produce equivalent forms of a quadratic expression or equations to reveal and explain properties.	

Aligned Components of Eureka Math²

A1.SSE.A.3.a Find the zeros of a quadratic function by rewriting it in factored form.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1.SSE.A.3.b Find the maximum or minimum value of a quadratic function by completing the square.	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Creating Equations

A1.CED.A Create equations that describe linear, quadratic and exponential relationships.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.CED.A.1	A1 M1 Lesson 7: Printing Presses	
Create equations and inequalities in one	A1 M1 Lesson 11: Writing and Solving Equations in One Variable	
variable and use them to model and/or	A1 M1 Lesson 13: Solving Linear Inequalities in One Variable	
solve problems.	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities	
	A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable	
A1.CED.A.2	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables	
Create and graph linear, quadratic and	A1 M2 Lesson 2: Graphing Linear Equations in Two Variables	
exponential equations in two variables.	A1 M2 Lesson 3: Creating Linear Equations in Two Variables	
	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities	
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form	
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form	

Aligned Components of Eureka Math²

A1.CED.A.2 continued	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 11: Graphing Exponential Functions
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Topic D: Comparing Linear and Exponential Models
A1.CED.A.3	A1 M1 Lesson 11: Writing and Solving Equations in One Variable
Represent constraints by equations	A1 M1 Lesson 14: Solution Sets of Compound Statements
or inequalities and by systems of equations or inequalities, and	A1 M1 Lesson 15: Solving and Graphing Compound Inequalities
interpret the data points as a solution	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables
or non-solution in a modeling context.	A1 M2 Lesson 6: Applications of Linear Equations and Inequalities
	A1 M6 Lesson 5: Solar System Models
	A1 M6 Lesson 6: Designing a Fundraiser
A1.CED.A.4	A1 M1 Lesson 12: Rearranging Formulas
Solve literal equations and formulas for a specified variable that highlights a quantity of interest.	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

Reasoning with Equations and Inequalities

A1.REI.A Understand solving equations as a process, and solve equations and inequalities in one variable.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.REI.A.1 Explain how each step taken when solving an equation or inequality in one variable creates an equivalent equation or inequality that has the same solution(s) as the original.	A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable A1 M1 Lesson 13: Solving Linear Inequalities in One Variable	
A1.REI.A.2 Solve problems involving quadratic equations.	This standard is fully addressed by the lessons aligned to its subsections.	
A1.REI.A.2.a Use the method of completing the square to create an equivalent quadratic equation.	A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square	
A1.REI.A.2.b Derive the quadratic formula.	A1 M4 Lesson 15: Deriving the Quadratic Formula	

Aligned Components of Eureka Math²

ΑI	.REI.	A.Z.C	

44 DEL 4 0 -

Analyze different methods of solving quadratic equations.

A1 M4 Lesson 5: Solving Equations That Contain Factored Expressions

A1 M4 Lesson 6: Solving Quadratic Equations by Factoring: Identities and Guess and Check

A1 M4 Lesson 7: Solving Quadratic Equations by Factoring: Splitting the Linear Term

A1 M4 Lesson 8: A Summary of Solving Quadratic Equations by Factoring

A1 M4 Lesson 9: Creating and Solving Quadratic Equations in One Variable

A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations

A1 M4 Lesson 14: Solving Quadratic Equations by Completing the Square

A1 M4 Lesson 16: Solving Quadratic Equations

A1 M4 Lesson 18: The Quadratic Formula and Zeros of a Function

Reasoning with Equations and Inequalities

A1.REI.B Solve systems of equations.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.REI.B.3

Solve a system of linear equations algebraically and/or graphically.

A1 M2 Lesson 7: Low-Flow Showerhead

A1 M2 Lesson 8: Systems of Linear Equations in Two Variables

A1 M2 Lesson 9: A New Way to Solve Systems

A1 M2 Lesson 10: The Elimination Method

A1 M2 Lesson 11: Applications of Systems of Equations

A1.REI.B.4

Solve a system consisting of a linear equation and a quadratic equation algebraically and/or graphically.

A1 M4 Lesson 24: Another Look at Systems of Equations

Aligned Components of Eureka Math²

A1.REI.B.5	A1 M2 Lesson 9: A New Way to Solve Systems
Justify that the technique of linear combination produces an equivalent system of equations.	

Reasoning with Equations and Inequalities

A1.REI.C Represent and solve linear and exponential equations and inequalities graphically.

Missouri	Mathematics
Learnin	g Standards

Aligned Components of Eureka Math²

A1.REI.C.6 Explain that the graph of an equation in two variables is the set of all its solutions plotted in the Cartesian coordinate plane.	A1 M2 Lesson 1: Solution Sets of Linear Equations in Two Variables A1 M2 Lesson 2: Graphing Linear Equations in Two Variables
A1.REI.C.7 Graph the solution to a linear inequality in two variables.	A1 M2 Lesson 4: Solution Sets of Linear Inequalities in Two Variables A1 M2 Lesson 5: Graphing Linear Inequalities in Two Variables
A1.REI.C.8 Solve problems involving a system of linear inequalities.	A1 M2 Lesson 12: Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities A1 M2 Lesson 14: Applications of Systems of Linear Inequalities

Arithmetic with Polynomials and Rational Expressions

A1.APR.A Perform operations on polynomials.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.APR.A.1 Add, subtract and multiply polynomials, and understand that polynomials follow the same general rules of arithmetic and are closed under these operations.	A1 M1 Lesson 3: Polynomial Expressions A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions A1 M1 Lesson 5: Multiplying Polynomial Expressions A1 M1 Lesson 6: Polynomial Identities
A1.APR.A.2	Supplemental material is necessary to address this standard.
Divide polynomials by monomials.	

Interpreting Functions

A1.IF.A Understand the concept of a function and use function notation.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.IF.A.1	A1 M3 Topic A: Functions and Their Graphs
Understand that a function from one set (domain) to another set (range) assigns to each element of the domain exactly one element of the range.	
A1.IF.A.1.a	A1 M3 Lesson 1: The Definition of a Function
Represent a function using	A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
function notation.	A1 M3 Lesson 6: Representations of Functions
	A1 M3 Lesson 16: Step Functions
	A1 M5 Lesson 1: Exploring Patterns

Aligned Components of Eureka Math²

A1.IF.A.1.a continued	A1 M5 Lesson 2: The Recursive Challenge A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 7: Sierpinski Triangle
A1.IF.A.1.b Understand that the graph of a function labeled f is the set of all ordered pairs (x, y) that satisfy the equation $y = f(x)$.	A1 M3 Topic A: Functions and Their Graphs
A1.IF.A.2 Use function notation to evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	A1 M3 Lesson 1: The Definition of a Function A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions A1 M3 Lesson 6: Representations of Functions A1 M3 Lesson 16: Step Functions A1 M5 Lesson 1: Exploring Patterns A1 M5 Lesson 2: The Recursive Challenge A1 M5 Lesson 3: Recursive Formulas for Sequences A1 M5 Lesson 4: Explicit Formulas for Sequences A1 M5 Lesson 7: Sierpinski Triangle

Interpreting Functions

A1.IF.B Interpret linear, quadratic and exponential functions in terms of the context.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

Using tables, graphs and verbal descriptions, interpret key characteristics of a function that models the relationship between two quantities.

A1 M3 Lesson 7: Exploring Key Features of a Function and Its Graph

A1 M3 Lesson 8: Identifying Key Features of a Function and Its Graph

A1 M3 Lesson 9: Representing Functions from Verbal Descriptions

A1 M3 Lesson 11: Comparing Functions

A1 M3 Lesson 12: Mars Curiosity Rover

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M4 Lesson 1: Falling Objects

A1 M4 Lesson 2: Projectile Motion

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form

A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

A1 M4 Lesson 25: Maximizing Area

A1.IF.B.4

Relate the domain and range of a function to its graph and, where applicable, to the quantitative relationship it describes. A1 M3 Lesson 3: The Graph of a Function

A1 M3 Lesson 13: Modeling Elevation as a Function of Time

A1 M3 Lesson 16: Step Functions

A1 M4 Lesson 2: Projectile Motion

A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion

A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

Aligned Components of Eureka Math²

A1.IF.B.5	A1 M4 Lesson 1: Falling Objects
Determine the average rate of change of a function over a specified interval and interpret the meaning.	A1 M4 Lesson 3: Analyzing Functions That Model Projectile Motion
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M5 Lesson 19: Analyzing Exponential Growth
	A1 M5 Lesson 20: Comparing Growth of Functions
	A1 M5 Lesson 24: Modeling an Invasive Species Population
A1.IF.B.6	A1 M5 Lesson 18: Modeling Populations
Interpret the parameters of a linear	A1 M5 Lesson 19: Analyzing Exponential Growth
or exponential function in terms of the context.	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
	A1 M5 Lesson 24: Modeling an Invasive Species Population

Interpreting Functions

A1.IF.C Analyze linear, quadratic and exponential functions using different representations.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.IF.C.7	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Graph functions expressed symbolically	A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations
and identify and interpret key features of the graph.	A1 M3 Lesson 6: Representations of Functions
or the graph.	A1 M3 Topic C: Piecewise-Defined Linear Functions
	A1 M3 Lesson 19: Building New Functions—Translations
	A1 M3 Lesson 23: A Summary of Transforming the Graph of a Function
	A1 M4 Lesson 4: Graphs of Quadratic Functions
	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	1

Aligned Components of Eureka Math²

A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
A1 M4 Lesson 10: Zeros of Functions
A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
A1 M5 Lesson 11: Graphing Exponential Functions
A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
A1 M5 Lesson 18: Modeling Populations
A1 M3 Lesson 11: Comparing Functions
A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions

Building Functions

A1.BF.A Build new functions from existing functions (limited to linear, quadratic and exponential).

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.BF.A.1	A1 M3 Topic D: Transformations of Functions
osalo shangos on functions	A1 M4 Lesson 20: Art with Transformations
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Linear, Quadratic and Exponential Models

A1.LQE.A Construct and compare linear, quadratic and exponential models and solve problems.

Missouri	Mathematics
Learnin	g Standards

Aligned Components of Eureka Math²

A1.LQE.A.1	A1 M5 Lesson 15: Calculating Interest
Distinguish between situations that can be modeled with linear or exponential functions.	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
	A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	A1 M6 Lesson 3: Populations of US Cities
A1.LQE.A.1.a	A1 M5 Lesson 19: Analyzing Exponential Growth
Determine that linear functions change by equal differences over equal intervals.	

Aligned Components of Eureka Math²

A1.LQE.A.1.b	A1 M5 Lesson 15: Calculating Interest
Recognize exponential situations in which a quantity grows or decays by a constant percent rate per unit interval.	A1 M5 Lesson 21: World Population Prediction
	A1 M5 Lesson 22: A Closer Look at Populations
	A1 M5 Lesson 24: Modeling an Invasive Species Population
A1.LQE.A.2	A1 M5 Lesson 20: Comparing Growth of Functions
Describe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.	
A1.LQE.A.3	A1 M4 Lesson 20: Art with Transformations
Construct linear, quadratic and	A1 M4 Topic D: Modeling with Quadratic Functions
exponential equations given graphs, verbal descriptions or tables.	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Topic D: Comparing Linear and Exponential Models
	A1 M6 Topic B: Developing Models for Contexts

Linear, Quadratic and Exponential Models

A1.LQE.B Use arithmetic and geometric sequences.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.LQE.B.4	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Write arithmetic and geometric sequences in recursive and explicit forms, and use them to model situations and translate between the two forms.	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
	A1 M5 Lesson 7: Sierpinski Triangle
A1.LQE.B.5	A1 M5 Lesson 1: Exploring Patterns
Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the set of integers.	A1 M5 Lesson 2: The Recursive Challenge
	A1 M5 Lesson 3: Recursive Formulas for Sequences
	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
A1.LQE.B.6	A1 M5 Lesson 2: The Recursive Challenge
Find the terms of sequences given an explicit or recursive formula.	A1 M5 Lesson 4: Explicit Formulas for Sequences
	A1 M5 Lesson 5: Arithmetic and Geometric Sequences

Data and Statistical Analysis

A1.DS.A Summarize, represent and interpret data.

Missouri Mathematics Learning Standards

Aligned Components of Eureka Math²

A1.DS.A.1	A1 M1 Lesson 18: Distributions and Their Shapes
Analyze and interpret graphical displays of data.	A1 M1 Lesson 19: Describing the Center of a Distribution
	A1 M1 Lesson 20: Using Center to Compare Data Distributions

Aligned Components of Eureka Math²

A1.DS.A.2	A1 M1 Topic D: Univariate Data
Use statistics appropriate to the shape of the data distribution to compare center and spread of two or more different data sets.	At the topic by offiverious basis
A1.DS.A.3 Interpret differences in shape, center and spreads in the context of the data sets, accounting for possible effects of outliers.	A1 M1 Topic D: Univariate Data
A1.DS.A.4 Summarize data in two-way frequency tables.	This standard is fully address by the lessons aligned to its subsections.
A1.DS.A.4.a Interpret relative frequencies in the context of the data.	A1 M2 Topic D: Categorical Data on Two Variables
A1.DS.A.4.b Recognize possible associations and trends in the data.	A1 M2 Lesson 23: Bivariate Categorical Data and Conditional Relative Frequency Tables A1 M2 Lesson 24: Conditional Relative Frequencies and Association
A1.DS.A.5 Construct a scatter plot of bivariate quantitative data describing how the variables are related; determine and use a function that models the relationship.	A1 M2 Lesson 15: Relationships Between Quantitative Variables A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Aligned Components of Eureka Math²

A1.DS.A.5.a	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Construct a linear function to model bivariate data represented on a scatter plot that minimizes residuals.	A1 M2 Lesson 17: Modeling Relationships with a Line
	A1 M2 Lesson 18: Calculating and Analyzing Residuals
	A1 M2 Lesson 19: Analyzing Residuals
	A1 M2 Lesson 20: Interpreting Correlation
	A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
	A1 M6 Lesson 3: Populations of US Cities
A1.DS.A.5.b	A1 M6 Lesson 2: Using Residual Plots to Select Models for Data
Construct an exponential function	A1 M6 Lesson 3: Populations of US Cities
to model bivariate data represented on a scatter plot that minimizes residuals.	
scatter plot that minimizes residuals.	
A1.DS.A.6	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Interpret the slope (rate of change) and	A1 M2 Lesson 17: Modeling Relationships with a Line
the <i>y</i> -intercept (constant term) of a linear model in the context of the data.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
A1.DS.A.7	A1 M2 Lesson 20: Interpreting Correlation
Determine and interpret the correlation coefficient for a linear association.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
coefficient for a linear association.	
A1.DS.A.8	A1 M2 Lesson 20: Interpreting Correlation
Distinguish between correlation and causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data