EUREKA MATH².

Algebra I | Nebraska's College and Career Ready Standards for Mathematics Correlation to *Eureka Math*^{2®}

When the original *Eureka Math*[®] curriculum was released, it quickly became the most widely used K-5 mathematics curriculum in the country. Now, the Great Minds[®] teacher-writers have created *Eureka Math*^{2®}, a groundbreaking new curriculum that helps teachers deliver exponentially better math instruction while still providing students with the same deep understanding of and fluency in math. *Eureka Math*² carefully sequences mathematical content to maximize vertical alignment-a principle tested and proven to be essential in students' mastery of math-from kindergarten through high school.

While this innovative new curriculum includes all the trademark *Eureka Math* and moments that have been delighting students and teachers for years, it also boasts these exciting new features:

Teachability

*Eureka Math*² employs streamlined materials that allow teachers to plan more efficiently and focus their energy on delivering highquality instruction that meets the individual needs of their students. Differentiation suggestions, slide decks, digital interactives, and multiple forms of assessment are just a few of the resources built right into the teacher materials.

Accessibility

*Eureka Math*² incorporates Universal Design for Learning principles so all learners can access the mathematics and take on challenging math concepts. Student supports are built into the instructional design and are clearly identified in the *Teach* book. Further, the curriculum carries a focus on readability. By eliminating unnecessary words and using simple, clear sentences, the *Eureka Math*² teacher-writers have created one of the most readable mathematics curricula on the market. The curriculum's readability and accessibility help all students see themselves as mathematical thinkers and doers who are fully capable of owning their mathematics learning.

Digital Engagement

The digital elements of *Eureka Math*² add to students' engagement with the math. The curriculum provides teachers with digital slides for each lesson. In addition, each grade level includes wordless videos that spark students' interest and curiosity. Students at all levels work through mathematical explorations that help lead to their own mathematical discoveries. Digital lessons and videos provide opportunities for students to wonder, explore, and make sense of mathematics, which contributes to the development of a strong, positive mathematical identity.

Nebraska Mathematical Practice	Aligned Components of Eureka Math ²
MP.1	Lessons in every module engage students in mathematical practices.
Make sense of problems and persevere in solving them.	These are indicated in margin notes included with every lesson.
MP.2	Lessons in every module engage students in mathematical practices.
Reason quantitatively and abstractly and consider the reasoning of others.	These are indicated in margin notes included with every lesson.
MP.3 Create and use representations to organize, record, and communicate mathematical ideas.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.
MP.4	Lessons in every module engage students in mathematical practices.
Analyze mathematical relationships to connect mathematical ideas.	These are indicated in margin notes included with every lesson.
MP.5 Explain and justify mathematical ideas using precise mathematical language in written or oral communication.	Lessons in every module engage students in mathematical practices. These are indicated in margin notes included with every lesson.

Number: Students will solve problems and reason with number concepts using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.N.2 Sets and Operations: Students will use number sets and operations to reason and to solve problems.

Nebraska's College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.N.2.a	A1 M5 Lesson 9: Unit Fraction Exponents
Extend the properties of exponents to rational numbers.	A1 M5 Lesson 10: Rational Exponents
HS.N.2.b	A1 M4 Lesson 13: Using Square Roots to Solve Quadratic Equations
Use properties of rational and irrational numbers.	A1 M4 Lesson 17: Rewriting Square Roots

Number: Students will solve problems and reason with number concepts using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.N.3 Interpretation and Sense Making: Students will reason abstractly and quantitatively using units to solve problems and interpret results in context.

Nebraska's College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

HS.N.3.c	A1 M6 Lesson 5: Solar System Models
Use units to assess the validity of an answer in the context of a problem.	

.

Algebra: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.A.1 Algebraic Relationships: Students will demonstrate and represent relationships with functions.

Nebraska's College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

HS.A.1.a Demonstrate that functions are a well mapped subdomain of relations.	A1 M3 Lesson 1: The Definition of a Function
HS.A.1.b Analyze a relation to determine if it is a function given mapping diagrams, function notation (e.g., $f(x) = x^2$), a table, or a graph.	A1 M3 Lesson 1: The Definition of a Function A1 M3 Lesson 2: Representing, Naming, and Evaluating Functions
HS.A.1.e Define, interpret, and analyze linear, quadratic, absolute value, and exponential functions using the points of interest of the functions and graphing technology.	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$ A1 M3 Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations A1 M3 Lesson 6: Representations of Functions A1 M3 Lesson 15: The Absolute Value Function A1 M4 Lesson 4: Graphs of Quadratic Functions A1 M4 Lesson 4: Graphs of Quadratic Functions from Factored Form A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1) A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)

Standards for Mathematics	Aligned Components of Eureka Math ²
HS.A.1.f	A1 M3 Topic D: Transformations of Functions
Identify, analyze, and apply	A1 M4 Lesson 20: Art with Transformations
transformations of existing functions (including translation and dilation).	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
(including translation and diation).	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time
HS.A.1.h	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Describe arithmetic sequences using tables of values and functions in explicit and recursive forms.	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
HS.A.1.i	A1 M5 Lesson 5: Arithmetic and Geometric Sequences
Describe geometric sequences using tables of values and functions in explicit and recursive forms.	A1 M5 Lesson 6: Representations of Arithmetic and Geometric Sequences
	A1 M5 Lesson 7: Sierpinski Triangle

Nebraska's College and Career Ready

Algebra: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.A.2 Algebraic Processes: Students will apply the operational properties when evaluating rational expressions and solving linear and quadratic equations, and inequalities.

Nebraska's College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

HS.A.2.a Analyze and explain the properties used in solving equations, inequalities, systems of linear equations, systems of linear inequalities, and literal equations.	A1 M1 Lesson 9: Solving Linear Equations in One Variable A1 M1 Lesson 10: Some Potential Dangers When Solving Equations A1 M1 Lesson 11: Writing and Solving Equations in One Variable
HS.A.2.b Generate expressions in equivalent forms by using algebraic properties to make different characteristics or features visible.	A1 M4 Lesson 10: Zeros of Functions A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions A1 M5 Lesson 11: Graphing Exponential Functions A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
HS.A.2.c Analyze equations and inequalities to determine and apply efficient methods to solve and use appropriate technology as needed.	A1 M1 Topic B: Solving Equations and Inequalities in One Variable A1 M1 Topic C: Compound Statements Involving Equations and Inequalities in One Variable

Nebraska's College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
HS.A.2.d	8 M4 Lesson 16: Proportional Relationships and Slope
Calculate the slope (rate of change) of a	8 M4 Lesson 17: Slopes of Rising Lines
line given coordinate points, a graph, or a table of values.	8 M4 Lesson 18: Slopes of Falling Lines
or a table of values.	8 M4 Lesson 19: Using Coordinates to Find Slope
	8 M4 Topic E: Different Forms of Linear Equations
	A1 M3 Lesson 3: Creating Linear Equations in Two Variables
HS.A.2.e	A1 M3 Lesson 4: The Graph of the Equation $y = f(x)$
Write and graph equations of functions	A1 M3 Lesson 15: The Absolute Value Function
(linear, absolute value, quadratic, and exponential) using the points of interest	A1 M4 Topic A: Quadratic Functions and Their Graphs
of the function.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form
	A1 M4 Lesson 12: Using Symmetry to Graph Quadratic Functions from Standard Form
	A1 M4 Lesson 19: Transforming the Graphs of Quadratic Functions
	A1 M4 Lesson 20: Art with Transformations
	A1 M4 Lesson 21: Completing the Square to Graph Quadratic Functions
	A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions
	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M5 Lesson 16: Exponential Growth
	A1 M5 Lesson 17: Exponential Decay
	A1 M5 Lesson 18: Modeling Populations
	A1 M5 Topic D: Comparing Linear and Exponential Models

Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A.2.f	8 M4 Lesson 21: Slope and Parallel Lines
Given a line, write the equation of a line that is parallel or perpendicular to it.	Supplemental material is necessary to address writing the equation of a line that is perpendicular to a given line.
HS.A.2.g	A1 M1 Lesson 3: Polynomial Expressions
Perform and explain operations such as addition, subtraction, multiplication, division, and factoring on polynomials.	A1 M1 Lesson 4: Adding and Subtracting Polynomial Expressions
	A1 M1 Lesson 5: Multiplying Polynomial Expressions
	A1 M1 Lesson 6: Polynomial Identities
	Supplemental material is necessary to address polynomial division.

Nebraska's College and Career Ready

Algebra: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.A.3 Applications: Students will solve authentic problems using nonlinear functions.

Nebraska's College and Career Ready Standards for Mathematics	Aligned Components of <i>Eureka Math</i> ²
HS.A.3.b	A1 M4 Lesson 10: Zeros of Functions
Identify, interpret, relate, and graph the factors, <i>x</i> -intercepts, roots, and zeros of polynomial functions using algebraic and graphing methods.	A1 M4 Lesson 11: Graphing Quadratic Functions from Factored Form A1 M4 Lesson 22: A Summary of Graphing Quadratic Functions

Data: Students will solve problems and reason with data/probability using multiple representations, make connections within math and across disciplines, and communicate their ideas.

HS.D.2 Analyze Data and Interpret Results: Students will represent and analyze the data and interpret the results.

Nebraska's College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
HS.D.2.e	A1 M2 Topic D: Categorical Data on Two Variables
Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data and recognize possible associations and trends in the data.	
HS.D.2.f	A1 M2 Lesson 15: Relationships Between Quantitative Variables
Represent data on two quantitative variables on a scatter plot and describe how the variables are related.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data
HS.D.2.g	A1 M2 Lesson 16: Using Lines to Model Bivariate Quantitative Data
Use technology to develop regression	A1 M2 Lesson 17: Modeling Relationships with a Line
models for linear and non-linear data to predict unobserved outcomes.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
Interpret slope and y-intercept in the	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
context of the problem.	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
HS.D.2.h	A1 M2 Lesson 20: Interpreting Correlation
Measure the strength of association using correlation coefficients for regression curves and interpret their meanings for the model.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Nebraska's College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

HS.D.2.i	A1 M2 Lesson 18: Calculating and Analyzing Residuals
Use residuals and residual plots to judge the quality of a regression model.	A1 M2 Lesson 19: Analyzing Residuals
	A1 M6 Topic A: Modeling Bivariate Quantitative Data
HS.D.2.j	A1 M2 Lesson 20: Interpreting Correlation
Recognize and explain when arguments based on data confuse correlation with causation.	A1 M2 Lesson 21: Analyzing Bivariate Quantitative Data

Algebra: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.

AT.A.1 Algebraic Relationships: Students will demonstrate and represent relationships with functions.

Nebraska's College and Career Ready Standards for Mathematics	Aligned Components of Eureka Math ²
AT.A.1.c	A1 M3 Topic D: Transformations of Functions
a parent function to the given function.	A1 M4 Lesson 20: Art with Transformations
	A1 M5 Lesson 12: Using Transformations to Graph Exponential Functions (Bases Greater Than 1)
	A1 M5 Lesson 13: Using Transformations to Graph Exponential Functions (Bases Between 0 and 1)
	A1 M5 Lesson 14: Writing Equations for Exponential Functions from Tables or Graphs
	A1 M5 Lesson 23: Modeling the Temperature of Objects Cooling Over Time

Algebra: Students will solve problems and reason with algebra using multiple representations, make connections within math and across disciplines, and communicate their ideas.

AT.A.3 Applications: Students will solve authentic problems using nonlinear functions and relations.

Nebraska's College and Career Ready Standards for Mathematics

Aligned Components of Eureka Math²

AT.A.3.a	A1 M3 Lesson 17: Piecewise Linear Functions in Context
Analyze and model authentic situations using various non-linear representations and relations with appropriate technology.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 15: Calculating Interest
	A1 M6 Topic B: Developing Models for Contexts
AT.A.3.b	A1 M3 Lesson 17: Piecewise Linear Functions in Context
Analyze and model authentic application situations using various non-linear representations and relations with appropriate technology.	A1 M4 Lesson 23: Creating Equations of Quadratic Functions to Model Contexts
	A1 M4 Lesson 25: Maximizing Area
	A1 M4 Lesson 26: Modeling Data with Quadratic Functions
	A1 M4 Lesson 27: Search and Rescue Helicopter
	A1 M5 Lesson 8: Exponential Functions
	A1 M5 Lesson 15: Calculating Interest
	A1 M6 Topic B: Developing Models for Contexts